Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Arch Microbiol ; 206(2): 78, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277061

RESUMO

Varicellovirus bovinealpha 1 (formerly bovine alphaherpesvirus type 1, BoAHV-1) is associated with several syndromes in cattle, including respiratory disease and is one of the main agents involved in the bovine respiratory disease complex (BRDC). Its infectious cycle is characterized by latent infections with sporadic virus reactivation and transmission. Although the acute disease can be prevented by the use of vaccines, specific therapeutic measures are not available. Ivermectin (IVM) is a semi-synthetic avermectin with a broad-spectrum antiparasitic activity, which has previously shown to have potential as an antiviral drug. In this study, IVM antiviral activity against BoAHV-1 was characterized in two cell lines (MDBK [Madin Darby bovine kidney] and BT [bovine turbinate]), including the measurement of intracellular drug accumulation within virus-infected cells. IVM antiviral activity was assessed at three different drug concentrations (1.25, 2.5 and 5 µM) after incubation for 24, 48 and 72 h. Slight cytotoxicity was only observed with 5 µM IVM. Even the lowest IVM dose was able to induce a significant reduction in virus titers in both cell lines. These findings indicate that the antiviral effects of IVM were evident in our experimental model within the range of concentrations achievable through therapeutic in vivo administration. Consequently, additional in vivo trials are necessary to validate the potential utility of these results in effectively managing BoAHV-1 in infected cattle.


Assuntos
Ivermectina , Varicellovirus , Animais , Bovinos , Ivermectina/farmacologia , Ivermectina/uso terapêutico , Antiparasitários/farmacologia , Antiparasitários/uso terapêutico , Antivirais/farmacologia
2.
Trop Anim Health Prod ; 54(4): 242, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907064

RESUMO

The aims of this work are, firstly, to provide the geolocalization of cases of bovine abortion with definitive diagnosis and, secondly, to estimate the economic losses due to the most frequent abortifacients diagnosed agents in cattle in Buenos Aires province, Argentina. The total beef and dairy cattle population at risk of abortion is 8,358,186 and 538,076, respectively. In beef cattle, the overall risk of abortion was estimated at 4.5% for all pregnancies, where 27.9% are due to Campylobacter fetus, Neospora caninum, Leptospira spp., Brucella abortus, and bovine viral diarrhea virus with economic losses of US$ 440 per abortion, being the annual loss to the beef industry of US$ 50,144,101. In dairy cattle, there was an 8.0% risk of suffering abortion, 26.1% produced by the same abortigenic agents. The economic losses were estimated at US$ 1,415 per abortion, which equals a total loss of US$ 17,298,498 for the dairy industry in the region. The results of this study show that infectious causes are highly prevalent in Buenos Aires province, and they caused severe economic impacts in the dairy and beef industries. Furthermore, changes in temporal trends of infectious abortion occurrence were detected, probably related to the inclusion of molecular diagnostic techniques with more sensitivity or different epidemiological or husbandry conditions in the region analyzed.


Assuntos
Abortivos , Doenças dos Bovinos , Coccidiose , Neospora , Aborto Animal/epidemiologia , Animais , Argentina/epidemiologia , Bovinos , Coccidiose/epidemiologia , Coccidiose/veterinária , Feminino , Gravidez
3.
PLoS Negl Trop Dis ; 11(8): e0005803, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28800590

RESUMO

Delivery of various forms of recombinant Theileria parva sporozoite antigen (p67) has been shown to elicit antibody responses in cattle capable of providing protection against East Coast fever, the clinical disease caused by T. parva. Previous formulations of full-length and shorter recombinant versions of p67 derived from bacteria, insect, and mammalian cell systems are expressed in non-native and highly unstable forms. The stable expression of full-length recombinant p67 in mammalian cells has never been described and has remained especially elusive. In this study, p67 was expressed in human-derived cells as a full-length, membrane-linked protein and as a secreted form by omission of the putative transmembrane domain. The recombinant protein expressed in this system yielded primarily two products based on Western immunoblot analysis, including one at the expected size of 67 kDa, and one with a higher than expected molecular weight. Through treatment with PNGase F, our data indicate that the larger product of this mammalian cell-expressed recombinant p67 cannot be attributed to glycosylation. By increasing the denaturing conditions, we determined that the larger sized mammalian cell-expressed recombinant p67 product is likely a dimeric aggregate of the protein. Both forms of this recombinant p67 reacted with a monoclonal antibody to the p67 molecule, which reacts with the native sporozoite. Additionally, through this work we developed multiple mammalian cell lines, including both human and bovine-derived cell lines, transduced by a lentiviral vector, that are constitutively able to express a stable, secreted form of p67 for use in immunization, diagnostics, or in vitro assays. The recombinant p67 developed in this system is immunogenic in goats and cattle based on ELISA and flow cytometric analysis. The development of a mammalian cell system that expresses full-length p67 in a stable form as described here is expected to optimize p67-based immunization.


Assuntos
Antígenos de Protozoários/biossíntese , Proteínas de Protozoários/biossíntese , Proteínas Recombinantes de Fusão/biossíntese , Animais , Anticorpos Monoclonais/imunologia , Antígenos de Protozoários/imunologia , Western Blotting , Bovinos , Ensaio de Imunoadsorção Enzimática , Cabras , Células HEK293 , Humanos , Proteínas de Protozoários/imunologia , Proteínas Recombinantes de Fusão/imunologia , Theileria parva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA