Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Regul Toxicol Pharmacol ; 125: 105020, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34333066

RESUMO

Omics methodologies are widely used in toxicological research to understand modes and mechanisms of toxicity. Increasingly, these methodologies are being applied to questions of regulatory interest such as molecular point-of-departure derivation and chemical grouping/read-across. Despite its value, widespread regulatory acceptance of omics data has not yet occurred. Barriers to the routine application of omics data in regulatory decision making have been: 1) lack of transparency for data processing methods used to convert raw data into an interpretable list of observations; and 2) lack of standardization in reporting to ensure that omics data, associated metadata and the methodologies used to generate results are available for review by stakeholders, including regulators. Thus, in 2017, the Organisation for Economic Co-operation and Development (OECD) Extended Advisory Group on Molecular Screening and Toxicogenomics (EAGMST) launched a project to develop guidance for the reporting of omics data aimed at fostering further regulatory use. Here, we report on the ongoing development of the first formal reporting framework describing the processing and analysis of both transcriptomic and metabolomic data for regulatory toxicology. We introduce the modular structure, content, harmonization and strategy for trialling this reporting framework prior to its publication by the OECD.


Assuntos
Metabolômica/normas , Organização para a Cooperação e Desenvolvimento Econômico/normas , Toxicogenética/normas , Toxicologia/normas , Transcriptoma/fisiologia , Documentação/normas , Humanos
2.
Toxicol In Vitro ; 62: 104692, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31669395

RESUMO

There is a growing recognition that application of mechanistic approaches to understand cross-species shared molecular targets and pathway conservation in the context of hazard characterization, provide significant opportunities in risk assessment (RA) for both human health and environmental safety. Specifically, it has been recognized that a more comprehensive and reliable understanding of similarities and differences in biological pathways across a variety of species will better enable cross-species extrapolation of potential adverse toxicological effects. Ultimately, this would also advance the generation and use of mechanistic data for both human health and environmental RA. A workshop brought together representatives from industry, academia and government to discuss how to improve the use of existing data, and to generate new NAMs data to derive better mechanistic understanding between humans and environmentally-relevant species, ultimately resulting in holistic chemical safety decisions. Thanks to a thorough dialogue among all participants, key challenges, current gaps and research needs were identified, and potential solutions proposed. This discussion highlighted the common objective to progress toward more predictive, mechanistically based, data-driven and animal-free chemical safety assessments. Overall, the participants recognized that there is no single approach which would provide all the answers for bridging the gap between mechanism-based human health and environmental RA, but acknowledged we now have the incentive, tools and data availability to address this concept, maximizing the potential for improvements in both human health and environmental RA.


Assuntos
Meio Ambiente , Saúde Ambiental , Toxicologia/tendências , Animais , Segurança Química , Humanos , Medição de Risco/métodos , Especificidade da Espécie
3.
Environ Health Perspect ; 118(1): 1-5, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20056575

RESUMO

BACKGROUND: In this commentary we present the findings from an international consortium on fish toxicogenomics sponsored by the U.K. Natural Environment Research Council (Fish Toxicogenomics-Moving into Regulation and Monitoring, held 21-23 April 2008 at the Pacific Environmental Science Centre, Vancouver, BC, Canada). OBJECTIVES: The consortium from government agencies, academia, and industry addressed three topics: progress in ecotoxicogenomics, regulatory perspectives on roadblocks for practical implementation of toxicogenomics into risk assessment, and dealing with variability in data sets. DISCUSSION: Participants noted that examples of successful application of omic technologies have been identified, but critical studies are needed to relate molecular changes to ecological adverse outcome. Participants made recommendations for the management of technical and biological variation. They also stressed the need for enhanced interdisciplinary training and communication as well as considerable investment into the generation and curation of appropriate reference omic data. CONCLUSIONS: The participants concluded that, although there are hurdles to pass on the road to regulatory acceptance, omics technologies are already useful for elucidating modes of action of toxicants and can contribute to the risk assessment process as part of a weight-of-evidence approach.


Assuntos
Ecotoxicologia , Monitoramento Ambiental , Animais , Ecotoxicologia/legislação & jurisprudência , Ecotoxicologia/tendências , Monitoramento Ambiental/legislação & jurisprudência , Peixes/genética , Agências Internacionais , Medição de Risco , Toxicogenética/legislação & jurisprudência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA