Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
2.
Am J Clin Nutr ; 98(3): 648-58, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23902784

RESUMO

BACKGROUND: Previous studies suggested that physical activity energy expenditure (AEE) is a major determinant of dietary fat oxidation, which is a central component of fat metabolism and body weight regulation. OBJECTIVE: We tested this hypothesis by investigating the effect of contrasted physical activity levels on dietary saturated and monounsaturated fatty acid oxidation in relation to insulin sensitivity while controlling energy balance. DESIGN: Sedentary lean men (n = 10) trained for 2 mo according to the current guidelines on physical activity, and active lean men (n = 9) detrained for 1 mo by reducing structured and spontaneous activity. Dietary [d31]palmitate and [1-¹³C]oleate oxidation and incorporation into triglyceride-rich lipoproteins and nonesterified fatty acid, AEE, and muscle markers were studied before and after interventions. RESULTS: Training increased palmitate and oleate oxidation by 27% and 20%, respectively, whereas detraining reduced them by 31% and 13%, respectively (P < 0.05 for all). Changes in AEE were positively correlated with changes in oleate (R² = 0.62, P < 0.001) and palmitate (R² = 0.66, P < 0.0001) oxidation. The d31-palmitate appearance in nonesterified fatty acid and very-low-density lipoprotein pools was negatively associated with changes in fatty acid translocase CD36 (R² = 0.30), fatty acid transport protein 1 (R² = 0.24), and AcylCoA synthetase long chain family member 1 (ACSL1) (R² = 0.25) expressions and with changes in fatty acid binding protein expression (R² = 0.33). The d31-palmitate oxidation correlated with changes in ACSL1 (R² = 0.39) and carnitine palmitoyltransferase 1 (R² = 0.30) expressions (P < 0.05 for all). Similar relations were observed with oleate. Insulin response was associated with AEE (R² = 0.34, P = 0.02) and oleate (R² = 0.52, P < 0.01) and palmitate (R² = 0.62, P < 001) oxidation. CONCLUSION: Training and detraining modified the oxidation of the 2 most common dietary fats, likely through a better trafficking and uptake by the muscle, which was negatively associated with whole-body insulin sensitivity.


Assuntos
Gorduras na Dieta/metabolismo , Metabolismo Energético , Exercício Físico/fisiologia , Peroxidação de Lipídeos , Ácido Oleico/metabolismo , Palmitatos/metabolismo , Comportamento Sedentário , Acetato-CoA Ligase/metabolismo , Adulto , Carnitina O-Palmitoiltransferase/metabolismo , Proteínas de Transporte de Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Lipoproteínas VLDL/metabolismo , Masculino , Oxirredução , Adulto Jovem
3.
Am J Physiol Endocrinol Metab ; 285(4): E775-82, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12824081

RESUMO

In humans, beta-adrenergic stimulation increases energy and fat metabolism. In the case of beta1-adrenergic stimulation, it is fueled by an increased lipolysis. We examined the effect of beta2-adrenergic stimulation, with and without a blocker of lipolysis, on thermogenesis and substrate oxidation. Furthermore, the effect of beta1-and beta2-adrenergic stimulation on uncoupling protein 3 (UCP3) mRNA expression was studied. Nine lean males received a 3-h infusion of dobutamine (DOB, beta1) or salbutamol (SAL, beta2). Also, we combined SAL with acipimox to block lipolysis (SAL+ACI). Energy and substrate metabolism were measured continuously, blood was sampled every 30 min, and muscle biopsies were taken before and after infusion. Energy expenditure significantly increased approximately 13% in all conditions. Fat oxidation increased 47 +/- 7% in the DOB group and 19 +/- 7% in the SAL group but remained unchanged in the SAL+ACI condition. Glucose oxidation decreased 40 +/- 9% upon DOB, remained unchanged during SAL, and increased 27 +/- 11% upon SAL+ACI. Plasma free fatty acid (FFA) levels were increased by SAL (57 +/- 11%) and DOB (47 +/- 16%), whereas SAL+ACI caused about fourfold lower FFA levels compared with basal levels. No change in UCP3 was found after DOB or SAL, whereas SAL+ACI downregulated skeletal muscle UCP3 mRNA levels 38 +/- 13%. In conclusion, beta2-adrenergic stimulation directly increased energy expenditure independently of plasma FFA levels. Furthermore, this is the first study to demonstrate a downregulation of skeletal muscle UCP3 mRNA expression after the lowering of plasma FFA concentrations in humans, despite an increase in energy expenditure upon beta2-adrenergic stimulation.


Assuntos
Proteínas de Transporte/metabolismo , Metabolismo Energético/fisiologia , Músculo Esquelético/metabolismo , Consumo de Oxigênio/fisiologia , Receptores Adrenérgicos beta/efeitos dos fármacos , Receptores Adrenérgicos beta/metabolismo , Adulto , Albuterol/farmacologia , Dobutamina/farmacologia , Relação Dose-Resposta a Droga , Metabolismo Energético/efeitos dos fármacos , Gorduras/metabolismo , Ácidos Graxos não Esterificados/sangue , Glucose/metabolismo , Humanos , Canais Iônicos , Masculino , Proteínas Mitocondriais , Músculo Esquelético/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Pirazinas/farmacologia , Coxa da Perna , Proteína Desacopladora 3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA