Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 17(9): e0274204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36074780

RESUMO

The recently discovered insecticidal protein Mpp75Aa1.1 from Brevibacillus laterosporus is a member of the ETX_MTX family of beta-pore forming proteins (ß-PFPs) expressed in genetically modified (GM) maize to control western corn rootworm (WCR; Diabrotica virgifera virgifera LeConte). In this manuscript, bioinformatic analysis establishes that although Mpp75Aa1.1 shares varying degrees of similarity to members of the ETX_MTX2 protein family, it is unlikely to have any allergenic, toxic, or otherwise adverse biological effects. The safety of Mpp75Aa1.1 is further supported by a weight of evidence approach including evaluation of the history of safe use (HOSU) of ETX_MTX2 proteins and Breviballus laterosporus. Comparisons between purified Mpp75Aa1.1 protein and a poly-histidine-tagged (His-tagged) variant of the Mpp75Aa1.1 protein demonstrate that both forms of the protein are heat labile at temperatures at or above 55°C, degraded by gastrointestinal proteases within 0.5 min, and have no adverse effects in acute mouse oral toxicity studies at a dose level of 1920 or 2120 mg/kg body weight. These results support the use of His-tagged proteins as suitable surrogates for assessing the safety of their non-tagged parent proteins. Taken together, we report that Mpp75Aa1.1 is the first ETX-MTX2 insecticidal protein from B. laterosporus and displays a similar safety profile as typical Cry proteins from Bacillus thuringiensis.


Assuntos
Bacillus thuringiensis , Besouros , Inseticidas , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/metabolismo , Brevibacillus , Besouros/genética , Endotoxinas/metabolismo , Inseticidas/farmacologia , Larva/metabolismo , Camundongos , Controle Biológico de Vetores/métodos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Zea mays/genética , Zea mays/metabolismo
2.
Regul Toxicol Pharmacol ; 131: 105160, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35311659

RESUMO

Rodent cancer bioassays have been long-required studies for regulatory assessment of human cancer hazard and risk. These studies use hundreds of animals, are resource intensive, and certain aspects of these studies have limited human relevance. The past 10 years have seen an exponential growth of new technologies with the potential to effectively evaluate human cancer hazard and risk while reducing, refining, or replacing animal use. To streamline and facilitate uptake of new technologies, a workgroup comprised of scientists from government, academia, non-governmental organizations, and industry stakeholders developed a framework for waiver rationales of rodent cancer bioassays for consideration in agrochemical safety assessment. The workgroup used an iterative approach, incorporating regulatory agency feedback, and identifying critical information to be considered in a risk assessment-based weight of evidence determination of the need for rodent cancer bioassays. The reporting framework described herein was developed to support a chronic toxicity and carcinogenicity study waiver rationale, which includes information on use pattern(s), exposure scenario(s), pesticidal mode-of-action, physicochemical properties, metabolism, toxicokinetics, toxicological data including mechanistic data, and chemical read-across from similar registered pesticides. The framework could also be applied to endpoints other than chronic toxicity and carcinogenicity, and for chemicals other than agrochemicals.


Assuntos
Neoplasias , Praguicidas , Agroquímicos/toxicidade , Animais , Bioensaio , Testes de Carcinogenicidade , Praguicidas/toxicidade , Medição de Risco , Roedores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA