Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Invest Radiol ; 51(8): 505-12, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26895195

RESUMO

OBJECTIVES: In this study, we propose a method to acquire high spatial-resolution T1ρ-maps, which allows bright and black-blood imaging, in a single breath-hold. To validate this innovative method, the reproducibility was tested in phantoms and volunteers. Lastly, the sensitivity and specificity for infarct detection was compared with the criterion standard late gadolinium enhancement (LGE). METHODS: T1ρ-mapping was performed using a T1ρ-prepared balanced steady-state free precession sequence at 1.5 T and 3 T. Five images with increasing spin-lock preparation times (spin-lock = 0, 10, 20, 30, 40 milliseconds, amplitude = 500 Hz) were acquired with an interval of 3 beats. Black-blood imaging was performed using a double inversion pulse sequence. The method was tested in 2 times 10 healthy volunteers at 1.5 and 3 T and in 9 myocardial infarction patients at 1.5 T. T1ρ-maps, and LGE images were scored for presence and extent of myocardial scarring. RESULTS: Phantom results show that the proposed T1ρ-mapping method gives accurate T1ρ-values. The mean T1ρ-relaxation time of the myocardium in healthy controls was 52.8 ± 1.8 milliseconds at 1.5 T and 46.4 ± 1.8 milliseconds at 3 T. In patients, the T1ρ of infarcted myocardium was (82.4 ± 5.2 milliseconds), and the T1ρ of remote myocardium was (54.2 ± 2.8 milliseconds; P < 0.0001). Sensitivity of infarct detection on a T1ρ-map was 70%, with a specificity of 94%, compared with LGE. CONCLUSIONS: In this study, we have investigated a method to acquire high spatial-resolution T1ρ-maps of the heart in a single breath-hold. This method proved to be reproducible and had high specificity compared with LGE and can thus be used for the endogenous detection of myocardial fibrosis in patients with ischemic cardiomyopathy.


Assuntos
Suspensão da Respiração , Imageamento por Ressonância Magnética/métodos , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/patologia , Miocárdio/patologia , Adulto , Feminino , Fibrose , Gadolínio , Coração/diagnóstico por imagem , Humanos , Aumento da Imagem/métodos , Masculino , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
2.
J Cardiovasc Magn Reson ; 14: 1, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22226320

RESUMO

BACKGROUND: We sought to investigate the relationship between infarct and dyssynchrony post- myocardial infarct (MI), in a porcine model. Mechanical dyssynchrony post-MI is associated with left ventricular (LV) remodeling and increased mortality. METHODS: Cine, gadolinium-contrast, and tagged cardiovascular magnetic resonance (CMR) were performed pre-MI, 9 ± 2 days (early post-MI), and 33 ± 10 days (late post-MI) post-MI in 6 pigs to characterize cardiac morphology, location and extent of MI, and regional mechanics. LV mechanics were assessed by circumferential strain (eC). Electro-anatomic mapping (EAM) was performed within 24 hrs of CMR and prior to sacrifice. RESULTS: Mean infarct size was 21 ± 4% of LV volume with evidence of post-MI remodeling. Global eC significantly decreased post MI (-27 ± 1.6% vs. -18 ± 2.5% (early) and -17 ± 2.7% (late), p < 0.0001) with no significant change in peri-MI and MI segments between early and late time-points. Time to peak strain (TTP) was significantly longer in MI, compared to normal and peri-MI segments, both early (440 ± 40 ms vs. 329 ± 40 ms and 332 ± 36 ms, respectively; p = 0.0002) and late post-MI (442 ± 63 ms vs. 321 ± 40 ms and 355 ± 61 ms, respectively; p = 0.012). The standard deviation of TTP in 16 segments (SD16) significantly increased post-MI: 28 ± 7 ms to 50 ± 10 ms (early, p = 0.012) to 54 ± 19 ms (late, p = 0.004), with no change between early and late post-MI time-points (p = 0.56). TTP was not related to reduction of segmental contractility. EAM revealed late electrical activation and greatly diminished conduction velocity in the infarct (5.7 ± 2.4 cm/s), when compared to peri-infarct (18.7 ± 10.3 cm/s) and remote myocardium (39 ± 20.5 cm/s). CONCLUSIONS: Mechanical dyssynchrony occurs early after MI and is the result of delayed electrical and mechanical activation in the infarct.


Assuntos
Imagem Cinética por Ressonância Magnética , Contração Miocárdica , Infarto do Miocárdio/complicações , Disfunção Ventricular Esquerda/diagnóstico , Função Ventricular Esquerda , Remodelação Ventricular , Animais , Fenômenos Biomecânicos , Meios de Contraste , Modelos Animais de Doenças , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Suínos , Fatores de Tempo , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia , Imagens com Corantes Sensíveis à Voltagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA