Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 3559, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729171

RESUMO

Robotics and autonomous systems are reshaping the world, changing healthcare, food production and biodiversity management. While they will play a fundamental role in delivering the UN Sustainable Development Goals, associated opportunities and threats are yet to be considered systematically. We report on a horizon scan evaluating robotics and autonomous systems impact on all Sustainable Development Goals, involving 102 experts from around the world. Robotics and autonomous systems are likely to transform how the Sustainable Development Goals are achieved, through replacing and supporting human activities, fostering innovation, enhancing remote access and improving monitoring. Emerging threats relate to reinforcing inequalities, exacerbating environmental change, diverting resources from tried-and-tested solutions and reducing freedom and privacy through inadequate governance. Although predicting future impacts of robotics and autonomous systems on the Sustainable Development Goals is difficult, thoroughly examining technological developments early is essential to prevent unintended detrimental consequences. Additionally, robotics and autonomous systems should be considered explicitly when developing future iterations of the Sustainable Development Goals to avoid reversing progress or exacerbating inequalities.


Assuntos
Robótica , Desenvolvimento Sustentável , Biodiversidade , Conservação dos Recursos Naturais , Objetivos , Humanos
2.
Heliyon ; 8(12): e12417, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36593823

RESUMO

This study investigated the cost competitiveness, using total cost of ownership (TCO) analysis, of hydrogen fuel cell electric vehicles (FCEVs) in heavy duty on and off-road fleet applications as a key enabler in the decarbonisation of the transport sector and compares results to battery electric vehicles (BEVs) and diesel internal combustion engine vehicles (ICEVs). Assessments were carried out for a present day (2021) scenario, and a sensitivity analysis assesses the impact of changing input parameters on FCEV TCO. This identified conditions under which FCEVs become competitive. A future outlook is also carried out examining the impact of time-sensitive parameters on TCO, when net zero targets are to be reached in the UK and EU. Several FCEVs are cost competitive with ICEVs in 2021, but not BEVs, under base case conditions. However, FCEVs do have potential to become competitive with BEVs under specific conditions favouring hydrogen, including the application of purchase grants and a reduced hydrogen price. By 2050, a number of FCEVs running on several hydrogen scenarios show a TCO lower than ICEVs and BEVs using rapid chargers, but for the majority of vehicles considered, BEVs remain the lowest in cost, unless specific FCEV incentives are implemented. This paper has identified key factors hindering the deployment of hydrogen and conducted comprehensive TCO analysis in heavy duty on and off-road fleet applications. The output has direct contribution to the decarbonisation of the transport sector.

3.
Environ Sci Technol ; 47(24): 13907-16, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24195736

RESUMO

Dhaka had recently experienced rapid conversion of its motor vehicle fleet to run on compressed natural gas (CNG). This paper quantifies ex-post the air quality and climate benefits of the CNG conversion policy, including monetary valuations, through an impact pathway approach. Around 2045 (1665) avoided premature deaths in greater Dhaka (City Corporation) can be attributed to air quality improvements from the CNG conversion policy in 2010, resulting in a saving of around USD 400 million. Majority of these health benefits resulted from the conversion of high-emitting diesel vehicles. CNG conversion was clearly detrimental from climate change perspective using the changes in CO2 and CH4 only (CH4 emissions increased); however, after considering other global pollutants (especially black carbon), the climate impact was ambiguous. Uncertainty assessment using input distributions and Monte Carlo simulation along with a sensitivity analysis show that large uncertainties remain for climate impacts. For our most likely estimate, there were some climate costs, valued at USD 17.7 million, which is an order of magnitude smaller than the air quality benefits. This indicates that such policies can and should be undertaken on the grounds of improving local air pollution alone and that precautions should be taken to reduce the potentially unintended increases in GHG emissions or other unintended effects.


Assuntos
Poluição do Ar/análise , Cidades , Clima , Veículos Automotores , Gás Natural/análise , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/economia , Poluição do Ar/economia , Bangladesh , Dióxido de Carbono/análise , Coleta de Dados , Efeito Estufa/economia , Humanos , Incerteza , Emissões de Veículos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA