RESUMO
Purpose: Axenfeld-Rieger syndrome (ARS) is characterized by ocular anomalies including posterior embryotoxon, iridocorneal adhesions, corectopia/iris hypoplasia, and developmental glaucoma. Although anterior segment defects and glaucoma contribute to decreased visual acuity, the role of potential posterior segment abnormalities has not been explored. We used high-resolution retinal imaging to test the hypothesis that individuals with ARS have posterior segment pathology. Methods: Three individuals with FOXC1-ARS and 10 with PITX2-ARS completed slit-lamp and fundus photography, optical coherence tomography (OCT), OCT angiography, and adaptive optics scanning light ophthalmoscopy (AOSLO). Quantitative metrics were compared to previously published values for individuals with normal vision. Results: All individuals demonstrated typical anterior segment phenotypes. Average ganglion cell and inner plexiform layer thickness was lower in PITX2-ARS, consistent with the glaucoma history in this group. A novel phenotype of foveal hypoplasia was noted in 40% of individuals with PITX2-ARS (but none with FOXC1-ARS). Moreover, the depth and volume of the foveal pit were significantly lower in PITX2-ARS compared to normal controls, even excluding individuals with foveal hypoplasia. Analysis of known foveal hypoplasia genes failed to identify an alternative explanation. Foveal cone density was decreased in one individual with foveal hypoplasia and normal in six without foveal hypoplasia. Two individuals (one from each group) demonstrated non-foveal retinal irregularities with regions of photoreceptor anomalies on OCT and AOSLO. Conclusions: These findings implicate PITX2 in the development of the posterior segment, particularly the fovea, in humans. The identified posterior segment phenotypes may contribute to visual acuity deficits in individuals with PITX2-ARS.
Assuntos
Segmento Anterior do Olho/anormalidades , Doenças da Córnea , Anormalidades do Olho , Oftalmopatias Hereditárias , Glaucoma , Humanos , Retina , Anormalidades do Olho/diagnóstico por imagem , Anormalidades do Olho/genética , Oftalmopatias Hereditárias/diagnóstico , Oftalmopatias Hereditárias/genética , Glaucoma/diagnóstico , Glaucoma/genéticaRESUMO
Purpose: Achromatopsia (ACHM) is an autosomal recessive retinal disease associated with reduced or absent cone function. There is debate regarding the extent to which cone structure shows progressive degeneration in patients with ACHM. Here, we used optical coherence tomography (OCT) images to evaluate outer nuclear layer (ONL) thickness and ellipsoid zone (EZ) integrity over time in individuals with ACHM. Methods: Sixty-three individuals with genetically confirmed ACHM with follow-up ranging from about 6 months to 10 years were imaged using either Bioptigen or Cirrus OCT. Foveal cone structure was evaluated by assessing EZ integrity and ONL thickness. Results: A total of 470 OCT images were graded, 243 OD and 227 OS. The baseline distribution of EZ grades was highly symmetrical between eyes (P = 0.99) and there was no significant interocular difference in baseline ONL thickness (P = 0.12). The EZ grade remained unchanged over the follow-up period for 60 of 63 individuals. Foveal ONL thickness showed a clinically significant change in only 1 of the 61 individuals analyzed, although detailed adaptive optics imaging revealed no changes in cone density in this individual. Conclusions: ACHM appears to be a generally stable condition, at least over the follow-up period assessed here. As cones are the cellular targets for emerging gene therapies, stable EZ and ONL thickness demonstrate therapeutic potential for ACHM, although other aspects of the visual system need to be considered when determining the best timing for therapeutic intervention.