Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 127: 105091, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065447

RESUMO

Musculoskeletal injuries often induce local accumulation of blood and/or fluid within the bone marrow, which is detected on medical imaging as edema-like marrow signal intensities (EMSI). In addition to its biological effects on post-injury recovery, the displacement of low-attenuating, largely adipocytic marrow by EMSI may introduce errors into quantitative computed tomography (QCT) measurements of bone mineral density (vBMD) and resulting bone stiffness estimates from image-based finite element (FE) analysis. We aimed to investigate the impact of post-injury changes in marrow soft tissue composition on CT-based bone measurements by applying CT imaging at multiple spatial resolutions. To do so, dual energy QCT (DECT) material decomposition was used to detect EMSI in the tibiae of nineteen participants with a recent anterior cruciate ligament tear. We then measured bone density and FE-based apparent modulus within the EMSI region and in a matched volume in the uninjured contralateral knee. Three measurement methods were applied: 1.) standard, QCT density calibration and density-based FEM; 2.) a DECT density calibration that provides density measurements adjusted for marrow soft tissues; and 3.) high-resolution peripheral QCT (HR-pQCT) density and microFE analyses. When measured using standard, single-energy QCT, vBMD and apparent modulus were elevated in the EMSI compared to the contralateral. After adjusting for marrow soft tissue composition using DECT, these measurements were no longer different between the two regions. By allowing for high-resolution, localized density analysis, HR-pQCT indicated that trabecular tissue mineral density was 9 mgHA/cm3 lower, while density of marrow soft tissues was 18 mgHA/cm3 higher, in the EMSI than the contralateral region, suggesting that EMSI have opposite effects on the measured density of trabecular bone and the underlying soft marrow. Thus, after an acute injury, altered composition of marrow soft tissues may artificially inflate overall measurements of bone density and apparent modulus obtained using standard QCT. This can be corrected by accounting for marrow soft tissue attenuation, either by using DECT-based density calibration or HR-pQCT microFE and measurements of local density of trabeculae.


Assuntos
Densidade Óssea , Traumatismos do Joelho , Medula Óssea/diagnóstico por imagem , Osso e Ossos , Humanos , Tomografia Computadorizada por Raios X/métodos
2.
Med Phys ; 48(4): 1792-1803, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33606278

RESUMO

PURPOSE: This study developed methods to quantify and improve the accuracy of dual-energy CT (DECT)-based bone marrow edema imaging using a clinical CT system. Objectives were: (a) to quantitatively compare DECT with gold-standard, fluid-sensitive MRI for imaging of edema-like marrow signal intensity (EMSI) and (b) to identify image analysis parameters that improve delineation of EMSI associated with acute knee injury on DECT images. METHODS: DECT images from ten participants with acute knee injury were decomposed into estimated fractions of bone, healthy marrow, and edema based on energy-dependent differences in tissue attenuation. Fluid-sensitive MR images were registered to DECT for quantitative, voxel-by-voxel comparison between the two modalities. An optimization scheme was developed to find attenuation coefficients for healthy marrow and edema that improved EMSI delineation, compared to MRI. DECT method accuracy was evaluated by measuring dice coefficients, mutual information, and normalized cross correlation between the DECT result and registered MRI. RESULTS: When applying the optimized three-material decomposition method, dice coefficients for EMSI identified through DECT vs MRI were 0.32 at the tibia and 0.13 at the femur. Optimization of attenuation coefficients improved dice coefficient, mutual information, and cross-correlation between DECT and gold-standard MRI by 48%-107% compared to three-material decomposition using non-optimized parameters, and improved mutual information and cross-correlation by 39%-58% compared to the manufacturer-provided two-material decomposition. CONCLUSIONS: This study quantitatively evaluated the performance of DECT in imaging knee injury-associated EMSI and identified a method to optimize DECT-based visualization of complex tissues (marrow and edema) whose attenuation parameters cannot be easily characterized. Further studies are needed to improve DECT-based EMSI imaging at the femur.


Assuntos
Medula Óssea , Traumatismos do Joelho , Medula Óssea/diagnóstico por imagem , Edema/diagnóstico por imagem , Humanos , Traumatismos do Joelho/complicações , Traumatismos do Joelho/diagnóstico por imagem , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X
3.
Can Assoc Radiol J ; 72(2): 208-214, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33345576

RESUMO

BACKGROUND: The Value-Based Healthcare (VBH) concept is designed to improve individual healthcare outcomes without increasing expenditure, and is increasingly being used to determine resourcing of and reimbursement for medical services. Radiology is a major contributor to patient and societal healthcare at many levels. Despite this, some VBH models do not acknowledge radiology's central role; this may have future negative consequences for resource allocation. METHODS, FINDINGS AND INTERPRETATION: This multi-society paper, representing the views of Radiology Societies in Europe, the USA, Canada, Australia, and New Zealand, describes the place of radiology in VBH models and the health-care value contributions of radiology. Potential steps to objectify and quantify the value contributed by radiology to healthcare are outlined.


Assuntos
Atenção à Saúde/economia , Custos de Cuidados de Saúde , Radiologia/economia , Radiologia/métodos , Austrália , Canadá , Europa (Continente) , Humanos , Nova Zelândia , Sociedades Médicas , Estados Unidos
4.
Radiology ; 298(3): 486-491, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33346696

RESUMO

Background The Value-Based Healthcare (VBH) concept is designed to improve individual healthcare outcomes without increasing expenditure, and is increasingly being used to determine resourcing of and reimbursement for medical services. Radiology is a major contributor to patient and societal healthcare at many levels. Despite this, some VBH models do not acknowledge radiology's central role; this may have future negative consequences for resource allocation. Methods, findings and interpretation This multi-society paper, representing the views of Radiology Societies in Europe, the USA, Canada, Australia, and New Zealand, describes the place of radiology in VBH models and the health-care value contributions of radiology. Potential steps to objectify and quantify the value contributed by radiology to healthcare are outlined. Published under a CC BY 4.0 license.


Assuntos
Atenção à Saúde/normas , Radiologia/normas , Aquisição Baseada em Valor , Consenso , Controle de Custos , Atenção à Saúde/economia , Humanos , Internacionalidade , Radiologia/economia , Sociedades Médicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA