Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Primatol ; 76(3): 230-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24151109

RESUMO

The major histocompatibility complex (MHC) plays an important role in the immune response and may thus crucially affect an individual's fitness, relevant also for studies on evolutionary ecology and wildlife conservation. Detailed knowledge on the genomic organization, polymorphism and diversity of the MHC has a narrow taxonomic focus though and among macaques is only available for rhesus and long-tailed macaques-the species most commonly kept for biomedical research. The lack of data on wild populations is largely due to the difficulty of obtaining blood or tissue samples necessary for genotyping approaches. Here, we aimed at analyzing MHC-DRB from non-invasively collected fecal samples in wild Assamese macaques (Macaca assamensis), utilizing the MHC-DRB-STR (D6S2878) microsatellite marker. Due to the fecal DNA source incomplete genotypes occurred, which may be improved in the future by method refinement. We detected 28 distinct DRB-STR lengths in 43 individuals with individual genotypes containing 1-9 MHC-DRB-STRs and defined four haplotypes segregating between families in Mendelian fashion. Our results indicate that variability and diversity of MHC-DRB in Assamese macaques is comparable to that of other macaque species and importantly, that fecal samples can be used for non-invasive analysis of MHC genes after refinement of the applied methods, opening a number of opportunities for MHC research on natural populations.


Assuntos
Fezes/química , Genótipo , Cadeias beta de HLA-DR/genética , Macaca/genética , Complexo Principal de Histocompatibilidade/genética , Animais , DNA/análise , Haplótipos/genética , Macaca/imunologia , Repetições de Microssatélites/genética , Repetições de Microssatélites/imunologia
2.
BMC Evol Biol ; 11: 77, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21435245

RESUMO

BACKGROUND: Colobine monkeys constitute a diverse group of primates with major radiations in Africa and Asia. However, phylogenetic relationships among genera are under debate, and recent molecular studies with incomplete taxon-sampling revealed discordant gene trees. To solve the evolutionary history of colobine genera and to determine causes for possible gene tree incongruences, we combined presence/absence analysis of mobile elements with autosomal, X chromosomal, Y chromosomal and mitochondrial sequence data from all recognized colobine genera. RESULTS: Gene tree topologies and divergence age estimates derived from different markers were similar, but differed in placing Piliocolobus/Procolobus and langur genera among colobines. Although insufficient data, homoplasy and incomplete lineage sorting might all have contributed to the discordance among gene trees, hybridization is favored as the main cause of the observed discordance. We propose that African colobines are paraphyletic, but might later have experienced female introgression from Piliocolobus/Procolobus into Colobus. In the late Miocene, colobines invaded Eurasia and diversified into several lineages. Among Asian colobines, Semnopithecus diverged first, indicating langur paraphyly. However, unidirectional gene flow from Semnopithecus into Trachypithecus via male introgression followed by nuclear swamping might have occurred until the earliest Pleistocene. CONCLUSIONS: Overall, our study provides the most comprehensive view on colobine evolution to date and emphasizes that analyses of various molecular markers, such as mobile elements and sequence data from multiple loci, are crucial to better understand evolutionary relationships and to trace hybridization events. Our results also suggest that sex-specific dispersal patterns, promoted by a respective social organization of the species involved, can result in different hybridization scenarios.


Assuntos
Evolução Biológica , Núcleo Celular/genética , Colobinae/genética , DNA Mitocondrial/genética , Hibridização Genética , Filogenia , Elementos Alu , Animais , Mapeamento Cromossômico , Colobinae/classificação , Feminino , Masculino , Análise de Sequência de DNA , Cromossomo X/genética , Cromossomo Y/genética
3.
Stud Health Technol Inform ; 108: 75-80, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15718632

RESUMO

In order to make intelligent biomedical clothing a market reality, a critical mass of scientific, technical and industrial capacities from various disciplines and industries must be successfully brought together. The textiles and clothing sector, i.e. the industry that transform natural or man-made fibres into yarns then with a myriad of processing options into complex tissues and finally into clothing, is undoubtedly a crucial element in such development. With Europe disposing of the world's most diverse, productive and innovative textiles and clothing industry, in addition to relevant expertise and resources in other scientific disciplines and industrial sectors, it could play a leading role in the advancement of the concept of intelligent biomedical clothing. In this process, a great number of challenges--firstly scientific and technical in nature--still need to be overcome and support from public funding programmes could constitute the necessary trigger for research and industrial efforts to be seriously undertaken. In view of the great benefits of such new products for the individual consumer, national health care systems and the society as a whole, a concerted effort in private-public partnership seems merited.


Assuntos
Tecnologia Biomédica/métodos , Vestuário , Indústria Têxtil/métodos , União Europeia/economia , Humanos , Internacionalidade , Marketing/economia , Indústria Têxtil/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA