Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 581-582: 350-358, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28062104

RESUMO

The implementation of targeted and nontargeted chemical screening analysis in combination with in vitro and organism-level bioassays is a prerequisite for a more holistic monitoring of water quality in the future. For chemical analysis, little or no sample enrichment is often sufficient, while bioanalysis often requires larger sample volumes at a certain enrichment factor for conducting comprehensive bioassays on different endpoints or further effect-directed analysis (EDA). To avoid logistic and technical issues related to the storage and transport of large volumes of water, sampling would benefit greatly from onsite extraction. This study presents a novel onsite large volume solid phase extraction (LVSPE) device tailored to fulfill the requirements for the successful effect-based and chemical screening of water resources and complies with available international standards for automated sampling devices. Laboratory recovery experiments using 251 organic compounds in the log D range from -3.6 to 9.4 (at pH7.0) spiked into pristine water resulted in acceptable recoveries and from 60 to 123% for 159 out of 251 substances. Within a European-wide demonstration program, the LVSPE was able to enrich compounds in concentration ranges over three orders of magnitude (1ngL-1 to 2400ngL-1). It was possible to discriminate responsive samples from samples with no or only low effects in a set of six different bioassays (i.e. acetylcholinesterase and algal growth inhibition, androgenicity, estrogenicity, fish embryo toxicity, glucocorticoid activity). The LVSPE thus proved applicable for onsite extraction of sufficient amounts of water to investigate water quality thoroughly by means of chemical analysis and effect-based tools without the common limitations due to small sample volumes.

2.
Sci Total Environ ; 503-504: 22-31, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24951181

RESUMO

SOLUTIONS (2013 to 2018) is a European Union Seventh Framework Programme Project (EU-FP7). The project aims to deliver a conceptual framework to support the evidence-based development of environmental policies with regard to water quality. SOLUTIONS will develop the tools for the identification, prioritisation and assessment of those water contaminants that may pose a risk to ecosystems and human health. To this end, a new generation of chemical and effect-based monitoring tools is developed and integrated with a full set of exposure, effect and risk assessment models. SOLUTIONS attempts to address legacy, present and future contamination by integrating monitoring and modelling based approaches with scenarios on future developments in society, economy and technology and thus in contamination. The project follows a solutions-oriented approach by addressing major problems of water and chemicals management and by assessing abatement options. SOLUTIONS takes advantage of the access to the infrastructure necessary to investigate the large basins of the Danube and Rhine as well as relevant Mediterranean basins as case studies, and puts major efforts on stakeholder dialogue and support. Particularly, the EU Water Framework Directive (WFD) Common Implementation Strategy (CIS) working groups, International River Commissions, and water works associations are directly supported with consistent guidance for the early detection, identification, prioritisation, and abatement of chemicals in the water cycle. SOLUTIONS will give a specific emphasis on concepts and tools for the impact and risk assessment of complex mixtures of emerging pollutants, their metabolites and transformation products. Analytical and effect-based screening tools will be applied together with ecological assessment tools for the identification of toxicants and their impacts. The SOLUTIONS approach is expected to provide transparent and evidence-based candidates or River Basin Specific Pollutants in the case study basins and to assist future review of priority pollutants under the WFD as well as potential abatement options.


Assuntos
Conservação dos Recursos Naturais/métodos , Poluentes Químicos da Água/análise , Poluição Química da Água/prevenção & controle , Recursos Hídricos/estatística & dados numéricos , Ecossistema , Monitoramento Ambiental , Política Ambiental , União Europeia , Substâncias Perigosas/análise , Medição de Risco , Poluição Química da Água/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA