Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0296031, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38386655

RESUMO

In the realm of digital image applications, image processing technology occupies a pivotal position, with image segmentation serving as a foundational component. As the digital image application domain expands across industries, the conventional segmentation techniques increasingly challenge to cater to modern demands. To address this gap, this paper introduces an MCMC-based image segmentation algorithm based on the Markov Random Field (MRF) model, marking a significant stride in the field. The novelty of this research lies in its method that capitalizes on domain information in pixel space, amplifying the local segmentation precision of image segmentation algorithms. Further innovation is manifested in the development of an adaptive segmentation image denoising algorithm based on MCMC sampling. This algorithm not only elevates image segmentation outcomes, but also proficiently denoises the image. In the experimental results, MRF-MCMC achieves better segmentation performance, with an average segmentation accuracy of 94.26% in Lena images, significantly superior to other common image segmentation algorithms. In addition, the study proposes that the denoising model outperforms other algorithms in peak signal-to-noise ratio and structural similarity in environments with noise standard deviations of 15, 25, and 50. In essence, these experimental findings affirm the efficacy of this study, opening avenues for refining digital image segmentation methodologies.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Razão Sinal-Ruído , Tecnologia
2.
Sci Total Environ ; 880: 163054, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36963691

RESUMO

The synergistic activation of persulfate by multiple factors could degrade pollutants more efficiently. However, the co-activation method based on metal ions has the risk of leakage. The non-metallic coupling method could achieve the same efficiency as the metal activation and meanwhile release environmental stress. In this study, the original biochar (BC) was prepared through using Chinese medicinal residue of Acanthopanax senticosus as the precursor. Compared with other biochar, the pore size structure was higher and toxicity risk was lower. The ultrasonic (US)/Acanthopanax senticosus biochar (ASBC)/persulfate oxidation system was established for Atrazine (ATZ). Results showed that 45KHz in middle and low frequency band cooperated with ASBC600 to degrade nearly 70 % of ATZ within 50 min, and US promoted the formation of SO4- and OH. Meanwhile, the synergy index of US and ASBC was calculated to be 1.18, which showed positive synergistic effect. Finally, the potential toxicity was examined by using Toxicity Characteristic Leaching Procedure (TCLP) and luminescent bacteria. This study provides a promising way for the activation of persulfate, which is expected to bring a new idea for the win-win situation of pollutant degradation and solid waste resource utilization.


Assuntos
Atrazina , Eleutherococcus , Poluentes Químicos da Água , Atrazina/toxicidade , Atrazina/análise , Medicina Tradicional Chinesa , Metais , Carvão Vegetal/química , Poluentes Químicos da Água/análise
3.
J Hazard Mater ; 398: 122768, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32768854

RESUMO

Cobalt-mediated activation of peroxymonosulfate (PMS) has been extensively investigated for the degradation of emerging organic pollutants. In this study, PMS activation via cobalt-impregnated biochar towards atrazine (ATZ) degradation was systematically examined, and the underlying reaction mechanism was explicated. It was found that persistent free radicals (PFRs) contained in biochar play a pivotal role in PMS activation process. The PFRs enabled an efficient transfer electron to both cobalt atom and O2, facilitating the recycle of Co(III)/Co(II), and thereby leaded to an excellent catalytic performance. In contrast to oxic condition, the elimination of dissolved oxygen significantly retarded the ATZ degradation efficiency from 0.76 to 0.36 min-1. Radical scavenging experiments and electron paramagnetic resonance (EPR) analysis confirmed that the ATZ degradation was primarily due to SO4·- and, to a lesser extent, ·OH. In addition, dual descriptor (DD) method was carried out to reveal reactive sites on ATZ for radicals attacking and predicted derivatives. Meanwhile, the possible ATZ degradation pathways were accordingly proposed, and the ecotoxicity evaluation of the oxidation intermediates was also conducted by ECOSAR. Consequently, the cobalt-impregnated biochar could be an efficient and environmentally friendly catalyst to activate PMS for abatement and detoxication of ATZ.


Assuntos
Atrazina , Poluentes Químicos da Água , Atrazina/toxicidade , Carvão Vegetal , Cobalto/toxicidade , Radicais Livres , Peróxidos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA