Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 465: 133324, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38150760

RESUMO

In low and medium income countries (LMIC) drinking water sources (wells and boreholes) often contain a high number of pathogenic microorganisms, that can pose significant human and environmental health risks. In this study, a quantitative microbial risk assessment approach based on existing literature was conducted to evaluate and compare the quantitative health risks associated with different age groups using various drinking water supply systems. Results showed that both community-supply and self-supply modes exhibit similar levels of risk. However, the self-supply water source consistently showed higher risks compared to the community-supply one. Borehole water was found to be a more suitable option than well water, consistently showing between 5 and 8 lower health risks for E. coli and fecal coliform levels, respectively. The sensitivity analysis further showed the importance of prioritizing the reduction of E. coli concentration in well water and fecal coliform concentration in borehole water. This study offers a fresh perception on quantifying the impact of exposure concentration and age groups, shedding light on how they affect environmental health risks. These findings provide valuable insights for stakeholders involved in the management and protection of water sources.


Assuntos
Água Potável , Humanos , Escherichia coli , Abastecimento de Água , Medição de Risco , Microbiologia da Água
2.
Environ Sci Pollut Res Int ; 28(48): 68615-68632, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34273075

RESUMO

Wastewater treatment plants (WWTPs) play a vital role in public health because it can emit a large quantity of bioaerosols. Exposure to bioaerosols from WWTPs is a potential health risk to WWTP workers and surrounding residents. In this study, the seasonal fluctuation of aerosolization ratios of several bioaerosols and quantitative health risks of the WWTP workers and the surrounding residents exposed to total coliform, fecal coliform, and enterococcal bioaerosols were analyzed. Results showed that the aerosolization ratio of airborne bacteria was higher in the cold seasons and lower in the warm seasons, whereas the aerosolization ratio of airborne fungi was the highest in summer. The aerosolization ratio of airborne fungi was evidently higher than that of other bioaerosols. Moreover, the aerosolization ratio under the inverted umbrella aerator mode was generally higher than that under the microporous aerator mode. For each exposure scenario, the health risks of males were generally 7.2-26.7% higher than those of females. The health risks of the exposure population exposed to total coliform and enterococcal bioaerosols were generally higher in warm seasons, whereas those of the population exposed to fecal coliform bioaerosol were the highest in winter. Additionally, the health risks of exposure population without masks under the imprudent/conservative estimate all exceeded the benchmarks. However, when equipped with masks, all the exposure populations' health risks decreased 1-2 orders of magnitude and approached acceptable levels. This research methodically provides new scientific data on the aerosolization ratio of microorganism bioaerosols in a WWTP and promotes the comprehension of their quantitative health risks under imprudent/conservative estimates.


Assuntos
Águas Residuárias , Purificação da Água , Aerossóis , Microbiologia do Ar , Feminino , Humanos , Masculino , Medição de Risco , Estações do Ano
3.
Chemosphere ; 265: 129117, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33272663

RESUMO

Wastewater treatment plants (WWTPs) are a nonnegligible source of bioaerosols that can pose health risks to workers and nearby residents. Thus, this study systematically investigated the emission characteristics of the size distribution and concentration of Staphylococcus aureus bioaerosol in a WWTP. Then, the research focused on the quantitative microbiological risk assessment (QMRA) of workers and nearby residents for equipping them with various grades personal protective equipment (PPE). Results showed that the peak proportion of the size distributions of bioaerosol particles in the three sources all obtained a size range between 3.3 and 4.7 µm. In the residential building, the peak proportion was larger (>7.0 µm). Referring to the three sources, the average bioaerosol concentrations were in the following sequence: inverted umbrella aerator tank > residual sludge storage yard > microporous aerator tank. The health risks of residents were generally 1-2 orders of magnitude higher than the other two exposure scenarios and were clearly beyond the benchmarks. Meanwhile, the health risks of the field engineer were usually lower than those of the staff at the residual sludge storage yard. In general, equipping workers and residents with PPE could at least decrease the health risks by one order of magnitude, and higher-grade PPE could appropriately promote the reduction of health risks. This research systematically delivered a series of novel data about the emission characteristics of Staphylococcus aureus bioaerosol in a WWTP. It advanced the understanding of the quantitative health risks of equipping individuals with various PPE.


Assuntos
Microbiologia do Ar , Águas Residuárias , Aerossóis , Humanos , Equipamento de Proteção Individual , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA