Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Water Res ; 210: 118009, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34974341

RESUMO

The utilization of natural ores and/or mine waste as substrate in constructed wetlands (CWs) to enhance nutrient removal performance has been gaining high popularity recently. However, the knowledge regarding the long-term feasibility and key removal mechanisms, particularly the potential negative environmental effects of contaminants leached from mine waste is far insufficient. This study, for the first time, performed a critical assessment by using different CWs with three mine waste (coal gangue, iron ore and manganese ore) as substrates in a 385-day experiment treating wastewater with varying nutrient loadings. The results showed that the addition of mine waste in CWs increased removal of total phosphorus (TP) by 17-34%, and total nitrogen (TN) by 11-51%. The higher removal of TP is mainly attributed to the strong binding mechanism of phosphate with the oxides and hydroxides of Mn, Fe and/or Al, which are leached out of mine waste. Moreover, integration of mine waste in CWs also significantly stimulated biofilm establishment and enriched the relative abundance of key functional genes related to the nitrogen cycle, supporting the observed high-rate nitrogen removal. However, leaching of heavy metals (Fe, Mn, Cu and Cr) from the beded mine waste in the experimented CWs was monitored, which further influenced cytoplasmic enzymes and created oxidative stress damage to plants, resulting in a decline of nutrient uptake by plants.


Assuntos
Eliminação de Resíduos Líquidos , Áreas Alagadas , Nutrientes , Fósforo , Águas Residuárias
2.
Ecotoxicol Environ Saf ; 184: 109593, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31479760

RESUMO

Leaf vegetables have strong capabilities to take up cadmium (Cd) compared to other vegetable varieties. Until now, the differences in Cd uptake and accumulation by leaf vegetables from different families and genera and the related health risks were unknown. To remedy this, we studied 71 leaf vegetables (multiple genotypes within 17 categories of vegetables) in soil cultivation experiments (3 Cd treatment levels). Results showed that at 2.12 mg kg-1 Cd treatment, the dry weight of only five genotypic varieties from the families Brassicaceae and Asteraceae significantly decreased compared to the control, suggesting their weak Cd tolerances. Vegetables from the Brassicaceae, Asteraceae, Apiaceae, and Convolvulaceae families had stronger Cd absorption capabilities, whereas those from the Liliaceae and Amaranthaceae families had weaker ones. Cluster analysis found that the 17 vegetable categories could be divided into three groups: vegetables with high Cd accumulation capabilities were Lactuca sativa L.var. ramosa Hort. and Lactuca sativa var. longifoliaf. Lam. Vegetables with moderate Cd accumulation capabilities were bok choy, napa cabbage, choy sum, leaf mustard, Lactuca sativa L., Sonchus oleraceus L., celery, coriander, and water spinach. Vegetables with low Cd accumulation capabilities were cabbage, crown daisy, garlic chive, Allium ascalonicum, Gynura cusimbua, and edible amaranth. Estimated daily intake (EDI) and target hazard quotient (THQ) analysis results showed that 100% genotypes of vegetables from the Apiaceae and Convolvulaceae families had health risks; 100% genotypes of Lactuca sativa L., Sonchus oleraceus L., Lactuca sativa L. var. ramosa Hort., and Lactuca sativa var. longifoliaf. Lam from the Asteraceae family carried high risks. Of vegetables in the Brassicaceae family, 42.9% showed risks. Vegetables from the Amaranthaceae and Liliaceae families, Gynura cusimbua and crown daisy from the Asteraceae family, and cabbage from the Brassicaceae family all displayed relatively low risks (all 100%).


Assuntos
Cádmio/metabolismo , Contaminação de Alimentos , Poluentes do Solo/metabolismo , Verduras/metabolismo , Cádmio/análise , Cádmio/toxicidade , Humanos , Folhas de Planta/classificação , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Medição de Risco , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Especificidade da Espécie , Estresse Fisiológico/efeitos dos fármacos , Verduras/classificação , Verduras/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA