Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Health Plann Manage ; 39(2): 432-446, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37950705

RESUMO

BACKGROUND: Paediatric healthcare is always highlighted in medical and health care system reform in China. Zhejiang Province established a new diagnosis-related group (DRG) point payment reform in 2020 to regulate provider behaviours and control medical costs. We conducted this study to evaluate impacts of the DRG point payment policy on provider behaviours and resource usage in children's medical services. METHODS: Data from patients' discharge records from July 2019 to December 2020 in Children's Hospital, Zhejiang University School of Medicine were collected for analysis. We employed the interrupted time series approach to reveal the trend before and after the DRG point payment reform and the difference-in-differences analysis to estimate the independent outcome changes attributed to the reform. RESULTS: We found that the upward trend of length of stay slightly slowed, and the total costs began to decrease at the post-policy stage. Although independent effects of the reform were not presented among the whole sample, the length of stay and hospitalisation costs of moderate-hospital-stay paediatric patients, non-surgical patients, and infant patients were found to decrease rapidly after the reform. CONCLUSION: DRG point payments can changed the provider behaviours and eventually reduce healthcare resource usage in children's medical services.


Assuntos
Grupos Diagnósticos Relacionados , Gastos em Saúde , Humanos , Criança , Tempo de Internação , Custos e Análise de Custo , Hospitalização
2.
Adv Sci (Weinh) ; 10(28): e2301180, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37607132

RESUMO

Real-time monitoring of vital sounds from cardiovascular and respiratory systems via wearable devices together with modern data analysis schemes have the potential to reveal a variety of health conditions. Here, a flexible piezoelectret sensing system is developed to examine audio physiological signals in an unobtrusive manner, including heart, Korotkoff, and breath sounds. A customized electromagnetic shielding structure is designed for precision and high-fidelity measurements and several unique physiological sound patterns related to clinical applications are collected and analyzed. At the left chest location for the heart sounds, the S1 and S2 segments related to cardiac systole and diastole conditions, respectively, are successfully extracted and analyzed with good consistency from those of a commercial medical device. At the upper arm location, recorded Korotkoff sounds are used to characterize the systolic and diastolic blood pressure without a doctor or prior calibration. An Omron blood pressure monitor is used to validate these results. The breath sound detections from the lung/ trachea region are achieved a signal-to-noise ration comparable to those of a medical recorder, BIOPAC, with pattern classification capabilities for the diagnosis of viable respiratory diseases. Finally, a 6×6 sensor array is used to record heart sounds at different locations of the chest area simultaneously, including the Aortic, Pulmonic, Erb's point, Tricuspid, and Mitral regions in the form of mixed data resulting from the physiological activities of four heart valves. These signals are then separated by the independent component analysis algorithm and individual heart sound components from specific heart valves can reveal their instantaneous behaviors for the accurate diagnosis of heart diseases. The combination of these demonstrations illustrate a new class of wearable healthcare detection system for potentially advanced diagnostic schemes.

3.
Opt Express ; 26(5): 6079-6089, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29529803

RESUMO

We propose a new technique to fabricate a highly specialized optical element, a hybrid planar Grating/Fresnel lens (G-Fresnel), which is particularly useful to improve or enable more-affordable miniature/portable spectrometers. Both the Fresnel and the grating surface are fabricated simultaneously by sandwiching soft PDMS between a hard grating and a pre-replicated negative Fresnel surface. Several adhesion reduction techniques are also investigated that help improve both fabrication and cost efficiency (by reducing the solidification time) as well as the lifetime of the mold. Alignment errors are systematically analyzed, and their effects on the G-Fresnel lens evaluated. A compact fabrication platform was built, which is smaller than a volume of 160☓140☓106 mm3 to fit into a conventional vacuum drying oven, for the fabrication of a G-Fresnel lens with a diameter of 25.4 mm, an equivalent focal length of 25 mm, and a blazed grating pattern with 600 lines/mm spacing. The solidification time was reduced to 2 hours thanks to the improved adhesion reduction technique that permits a PDMS drying-temperature as high as 65 °C. The fabricated G-Fresnel lens was evaluated with regard to both geometrical fabrication precision and optical performance. The measured results, using a step gauge and atomic force microscopy, confirm that this replication technique produces high-quality replicates of the master surface-profile. Furthermore, a prototype spectrometer that uses a G-Fresnel lens was built and evaluated. The spectrometer fits within a volume of about 100 mm☓50 mm☓30 mm, and it operates across a wide wavelength spectrum (450 nm to 650 nm). Both the calculation based on the optical software ZEMAX and the experimental measurements are consistent and confirm that the spectrometer with the G-Fresnel lens can provide a spectral resolution of better than 1.2nm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA