Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Musculoskelet Disord ; 22(1): 854, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625068

RESUMO

BACKGROUND: The high signal of paravertebral muscle (PVM) on T2-weighted image (T2WI) is usually considered to be fatty degeneration. However, it is difficult to distinguish inflammatory edema from fatty degeneration on T2WI. The purpose of this study was to identify different types of PVM high signal in patients with low back pain (LBP) through magnetic resonance imaging (MRI) and histology. METHODS: Seventy patients with LBP underwent MRI. The signal change of multifidus both on T2WI and fat suppression image (FSI) was quantified by Image J. Furthermore, 25 of the 70 patients underwent surgery for degenerative lumbar disease and their multifidus were obtained during the operation. Histological analysis of the samples was performed by HE staining. RESULT: Three types of PVM signal changes were identified from the MRI. Type 1 (n = 36) indicated fatty degeneration characterized by a high signal on T2WI and low signal on FSI. High signal on both T2WI and FSI, signifying type 2 meant inflammatory edema (n = 9). Type 3 (n = 25) showed high signal on T2WI and partial signal suppression on FSI, which meant a combination of fatty degeneration and inflammatory edema. Histological results were consistent with MRI. Among the 25 patients who underwent surgery, type 1 (n = 14) showed adipocytes infiltration, type 2 (n = 3) showed inflammatory cells infiltration and type 3 (n = 8) showed adipocytes and inflammatory cells infiltration. CONCLUSION: From our results, there are three types of pathological changes in patients with PVM degeneration, which may help to decide on targeted treatments for LBP.


Assuntos
Dor Lombar , Atrofia Muscular , Estudos Transversais , Humanos , Dor Lombar/diagnóstico por imagem , Dor Lombar/patologia , Imageamento por Ressonância Magnética , Atrofia Muscular/patologia , Músculos Paraespinais/patologia
2.
Materials (Basel) ; 9(7)2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-28773674

RESUMO

The passivated emitter and rear cell (PERC) concept is one of the most promising technologies for increasing crystalline silicon solar cell efficiency. Instead of using the traditional laser ablation process, this paper demonstrates spin-coated polystyrene spheres (PS) to create local openings on the rear side of PERCs. Effects of PS concentration and post-annealing temperature on PERC performance are investigated. The experimental results show that the PS are randomly distributed on wafers and no PS are joined together at a spin rate of 2000 rpm. The PS can be removed at a temperature of 350 °C, leaving holes on the passivation layers without damaging the wafer surfaces. As compared to the laser opening technique with the same contact fraction, the PS opening technique can yield a higher minority effective lifetime, a higher implied open-circuit voltage, and a slightly higher short-circuit current. Although the fill factor of the PS opening technique is lower owing to non-optimized distribution of the openings, the conversion efficiency of the devices is comparable to that of devices prepared via the laser opening process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA