Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(35): 41880-41891, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37625156

RESUMO

Recent advancements have introduced anisotropic structures, particularly 2D nanosheets, into aerogels, resulting in unique morphologies and exceptional properties that differ from those assembled by isotropic nanoparticles. However, exploration of the distinct porous networks and the resulting properties is limited. We focus on rare earth yttria (Y2O3) aerogels as a case in point and demonstrate the synthesis of aerogels with nanosheet and nanoparticle assemblies using elaborative sol-gel chemistry. With the aid of X-ray computed tomography, three-dimensional visualizations of the aerogels provide relative compressive views of the porous network, revealing that the Y2O3 aerogel assembled by nanosheets possesses a hierarchical pore structure characterized by uneven pore distribution, particularly the presence of macropores throughout; in contrast, these consist of nanoparticles exhibiting a relative uniform pore distribution. High-temperature examinations indicate that the nanosheet aerogels are much more stable with a specific surface area of 64 m2·g-1 after being exposed at 1300 °C; meanwhile, the aerogels present durable and efficient thermal insulation performances. The exceptional thermal properties are attributed to the synergistic effects of the nanosheets' crystalline nature and the hierarchical porous network. The nanosheet Y2O3 aerogel also exhibited superior luminescent emission characteristics, further enhancing its potential for various applications. Our findings provide further insights into optimization of the microstructures in nanoporous aerogels, particularly through the utilization of anisotropic nanosheets.

2.
Psychopharmacology (Berl) ; 239(9): 2875-2884, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35716192

RESUMO

RATIONALE: Following the emergence of methylone as one of the most popular synthetic cathinones, this group of novel psychoactive substance with names ending in "-lone," such as dibutylone, ethylone, and N-ethylpentylone, appeared on the recreational drug market. The pharmacological mechanisms of dibutylone, ethylone, and N-ethylpentylone are well understood; however, to date, the reinforcing effects of dibutylone, ethylone, and N-ethylpentylone are still unclear. OBJECTIVES: This study aimed to examine the self-administration of dibutylone, ethylone, and N-ethylpentylone relative to methamphetamine (METH) and to quantify their relative reinforcing effectiveness using behavioral economic analysis. METHODS: Male Sprague-Dawley rats were trained to self-administer METH (0.05 mg/kg) under a fixed-ratio 1 (FR1) schedule. Following the training, dose substitution was used to generate full dose-response curves for METH and the three synthetic cathinones. According to the first doses on the descending limb of the dose-response curves, rats were trained to self-administer METH (0.05 mg/kg), dibutylone (0.1 mg·kg-1·infusion-1), ethylone (0.4 mg·kg-1·infusion-1), or N-ethylpentylone (0.1 mg·kg-1·infusion-1) under an FR1 schedule, and a behavioral economic evaluation of their reinforcing effectiveness was then performed. RESULTS: Dibutylone, ethylone, and N-ethylpentylone functioned as reinforcers, and the inverted U-shaped dose-response curves were obtained. The rank order of reinforcing potency in this procedure was METH > N-ethylpentylone ≈ dibutylone > ethylone. In the economic analysis, the comparisons of the essential value (EV) transformed from demand elasticity (α) indicated that the rank order of efficacy as reinforcers was METH (EV = 7.93) ≈ dibutylone (EV = 7.81) > N-ethylpentylone (EV = 5.21) ≈ ethylone (EV = 4.19). CONCLUSIONS: These findings demonstrated that dibutylone, ethylone, and N-ethylpentylone function as reinforcers and have addictive potential, suggesting that the modification of α-alkyl and N-alkyl side chains may affect their reinforcing efficacy.


Assuntos
Estimulantes do Sistema Nervoso Central , Metanfetamina , Acetona/análogos & derivados , Animais , Benzodioxóis , Butilaminas , Relação Dose-Resposta a Droga , Economia Comportamental , Etilaminas , Masculino , Metanfetamina/farmacologia , N-Metil-3,4-Metilenodioxianfetamina/análogos & derivados , Ratos , Ratos Sprague-Dawley , Autoadministração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA