Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMJ Glob Health ; 7(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35914832

RESUMO

BACKGROUND: A few studies have assessed the epidemiological impact and the cost-effectiveness of COVID-19 vaccines in settings where most of the population had been exposed to SARS-CoV-2 infection. METHODS: We conducted a cost-effectiveness analysis of COVID-19 vaccine in Kenya from a societal perspective over a 1.5-year time frame. An age-structured transmission model assumed at least 80% of the population to have prior natural immunity when an immune escape variant was introduced. We examine the effect of slow (18 months) or rapid (6 months) vaccine roll-out with vaccine coverage of 30%, 50% or 70% of the adult (>18 years) population prioritising roll-out in those over 50-years (80% uptake in all scenarios). Cost data were obtained from primary analyses. We assumed vaccine procurement at US$7 per dose and vaccine delivery costs of US$3.90-US$6.11 per dose. The cost-effectiveness threshold was US$919.11. FINDINGS: Slow roll-out at 30% coverage largely targets those over 50 years and resulted in 54% fewer deaths (8132 (7914-8373)) than no vaccination and was cost saving (incremental cost-effectiveness ratio, ICER=US$-1343 (US$-1345 to US$-1341) per disability-adjusted life-year, DALY averted). Increasing coverage to 50% and 70%, further reduced deaths by 12% (810 (757-872) and 5% (282 (251-317) but was not cost-effective, using Kenya's cost-effectiveness threshold (US$919.11). Rapid roll-out with 30% coverage averted 63% more deaths and was more cost-saving (ICER=US$-1607 (US$-1609 to US$-1604) per DALY averted) compared with slow roll-out at the same coverage level, but 50% and 70% coverage scenarios were not cost-effective. INTERPRETATION: With prior exposure partially protecting much of the Kenyan population, vaccination of young adults may no longer be cost-effective.


Assuntos
Vacinas contra COVID-19 , COVID-19 , COVID-19/prevenção & controle , Análise Custo-Benefício , Humanos , Quênia/epidemiologia , SARS-CoV-2 , Adulto Jovem
2.
BMC Infect Dis ; 14: 524, 2014 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-25267261

RESUMO

BACKGROUND: Host genotype accounts for a component of the variability in susceptibility to childhood Plasmodium falciparum malaria. However, despite numerous examples of host polymorphisms associated with tolerance or resistance to infection, direct evidence for an impact of host genetic polymorphisms on the in vivo parasite population is difficult to obtain. Parasite molecules whose expression is most likely to be associated with such adaptation are those that are directly involved in the host-parasite interaction. A prime candidate is the family of parasite var gene-encoded molecules on P. falciparum-infected erythrocytes, PfEMP1, which binds various host molecules and facilitates parasite sequestration in host tissues to avoid clearance by the spleen. METHODS: To assess the impact of host genotype on the infecting parasite population we used a published parasite var gene sequence dataset to compare var gene expression patterns between parasites from children with polymorphisms in molecules thought to interact with or modulate display of PfEMP1 on the infected erythrocyte surface: ABO blood group, haemoglobin S, alpha-thalassaemia, the T188G polymorphism of CD36 and the K29M polymorphism of ICAM1. RESULTS: Expression levels of 'group A-like' var genes, which encode a specific group of PfEMP1 variants previously associated with low host immunity and severe malaria, showed signs of elevation among children of blood group AB. No other host factor tested showed evidence for an association with var expression. CONCLUSIONS: Our preliminary findings suggest that host ABO blood group may have a measurable impact on the infecting parasite population. This needs to be verified in larger studies.


Assuntos
Malária Falciparum/genética , Plasmodium falciparum/metabolismo , Polimorfismo Genético , Criança , Pré-Escolar , Eritrócitos/parasitologia , Feminino , Expressão Gênica , Frequência do Gene , Genótipo , Interações Hospedeiro-Parasita , Humanos , Lactente , Quênia , Malária Falciparum/parasitologia , Masculino , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA