Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Funct Ecol ; 33(5): 819-832, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32038063

RESUMO

1. The simple bioenergetic models in the family of Dynamic Energy Budget (DEB) consist of a small number of state equations quantifying universal processes, such as feeding, maintenance, development, reproduction and growth. Linking these organismal level processes to underlying suborganismal mechanisms at the molecular, cellular and organ level constitutes a major challenge for predictive ecological risk assessments. 2. Motivated by the need for process-based models to evaluate the impact of endocrine disruptors on ecologically relevant endpoints, this paper develops and evaluates two general modeling modules describing demand-driven feedback mechanisms exerted by gonads on the allocation of resources to production of reproductive matter within the DEB modeling framework. 3. These modules describe iteroparous, semelparous and batch-mode reproductive strategies. The modules have a generic form with both positive and negative feedback components; species and sex specific attributes of endocrine regulation can be added without changing the core of the modules. 4. We demonstrate that these modules successfully describe time-resolved measurements of wet weight of body, ovaries and liver, egg diameter and plasma content of vitellogenin and estradiol in rainbow trout (Oncorynchus mykiss) by fitting these models to published and new data, which require the estimation of less than two parameters per data type. 5. We illustrate the general applicability of the concept of demand-driven allocation of resources to reproduction as worked out in this paper by evaluating one of the modules with data on growth and seed production of an annual plant, the common bean (Phaseolis vulgaris).

2.
Integr Environ Assess Manag ; 14(5): 615-624, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29870141

RESUMO

A working group at the National Institute for Mathematical and Biological Synthesis (NIMBioS) explored the feasibility of integrating 2 complementary approaches relevant to ecological risk assessment. Adverse outcome pathway (AOP) models provide "bottom-up" mechanisms to predict specific toxicological effects that could affect an individual's ability to grow, reproduce, and/or survive from a molecular initiating event. Dynamic energy budget (DEB) models offer a "top-down" approach that reverse engineers stressor effects on growth, reproduction, and/or survival into modular characterizations related to the acquisition and processing of energy resources. Thus, AOP models quantify linkages between measurable molecular, cellular, or organ-level events, but they do not offer an explicit route to integratively characterize stressor effects at higher levels of organization. While DEB models provide the inherent basis to link effects on individuals to those at the population and ecosystem levels, their use of abstract variables obscures mechanistic connections to suborganismal biology. To take advantage of both approaches, we developed a conceptual model to link DEB and AOP models by interpreting AOP key events as measures of damage-inducing processes affecting DEB variables and rates. We report on the type and structure of data that are generated for AOP models that may also be useful for DEB models. We also report on case studies under development that merge information collected for AOPs with DEB models and highlight some of the challenges. Finally, we discuss how the linkage of these 2 approaches can improve ecological risk assessment, with possibilities for progress in predicting population responses to toxicant exposures within realistic environments. Integr Environ Assess Manag 2018;14:615-624. © 2018 SETAC.


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Ecologia , Modelos Teóricos , Medição de Risco
3.
Biol Reprod ; 97(3): 365-377, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29088396

RESUMO

Despite its importance to reproduction, certain mechanisms of early ovarian development remain a mystery. To improve our understanding, we constructed the first cell-based computational model of ovarian development in mice that is divided into two phases: Phase I spans embryonic day 5.5 (E5.5) to E12.5; and Phase II spans E12.5 to postnatal day 2. We used the model to investigate four mechanisms: in Phase I, (i) whether primordial germ cells (PGCs) undergo mitosis during migration; and (ii) if the mechanism for secretion of KIT ligand from the hindgut resembles inductive cell-cell signaling or is secreted in a static manner; and in Phase II, (iii) that changes in cellular adhesion produce germ cell nest breakdown; and (iv) whether localization of primordial follicles in the cortex of the ovary is due to proliferation of granulosa cells. We found that the combination of the first three hypotheses produced results that aligned with experimental images and PGC abundance data. Results from the fourth hypothesis did not match experimental images, which suggests that more detailed processes are involved in follicle localization. Phase I and Phase II of the model reproduce experimentally observed cell counts and morphology well. A sensitivity analysis identified contact energies, mitotic rates, KIT chemotaxis strength, and diffusion rate in Phase I and oocyte death rate in Phase II as parameters with the greatest impact on model predictions. The results demonstrate that the computational model can be used to understand unknown mechanisms, generate new hypotheses, and serve as an educational tool.


Assuntos
Biologia Computacional , Simulação por Computador , Ovário/crescimento & desenvolvimento , Animais , Adesão Celular , Movimento Celular , Desenvolvimento Embrionário/fisiologia , Feminino , Células Germinativas , Células da Granulosa/fisiologia , Camundongos , Mitose , Método de Monte Carlo , Ovário/embriologia , Gravidez , Diferenciação Sexual , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Software , Fator de Células-Tronco
4.
Regul Toxicol Pharmacol ; 55(2): 123-33, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19540296

RESUMO

The manner in which humans smoke cigarettes is an important determinant of smoking risks. Of the few investigators that have predicted cancer risks from smoking on a chemical-specific basis, most used mainstream cigarette smoke (MCS) carcinogen emissions obtained via machine smoking protocols that only approximate human smoking conditions. Here we use data of Djordjevic et al. [Djordjevic, M.V., Stellman, S.D., Zang, E., 2000. Doses of nicotine and lung carcinogens delivered to cigarette smokers. J. Natl. Cancer Inst. 92, 106-111] for MCS emissions of three carcinogens measured under human smoking conditions to compute probability distributions of incremental lifetime cancer risk (ILCR) values using Monte Carlo simulations. The three carcinogens considered are benzo[a]pyrene, N'-nitrosonornicotine (NNN), and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Computed NNK ILCR values were compared with lifetime risks of lung cancer (ILCR(CMD)(obsSigma-lung)) derived from American Cancer Society Cancer Prevention Studies (CPS) I and II. Within the Monte Carlo simulation results, NNK was responsible for the greatest ILCR values for all cancer endpoints: median ILCR values for NNK were approximately 18-fold and 120-fold higher than medians for NNN and benzo[a]pyrene, respectively. For "regular" cigarettes, the NNK median ILCR for lung cancer was lower than ILCR(CMD)(obsSigma-lung) from CPS-I and II by >90-fold for men and >4-fold for women. Given what is known about chemical carcinogens in MCS, this study shows that there is a higher incidence of lung cancer from exposure to MCS than can be predicted with current risk assessment methods using available toxicity and emission data.


Assuntos
Benzo(a)pireno/toxicidade , Carcinógenos/toxicidade , Neoplasias Pulmonares/etiologia , Nitrosaminas/toxicidade , Fumar/efeitos adversos , Relação Dose-Resposta a Droga , Feminino , Humanos , Exposição por Inalação/efeitos adversos , Neoplasias Pulmonares/epidemiologia , Masculino , Método de Monte Carlo , Medição de Risco , Fumaça/análise , Fumar/epidemiologia , Estados Unidos/epidemiologia
5.
Toxicol Sci ; 109(2): 180-92, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19357070

RESUMO

Estrogenic chemicals in the aquatic environment have been shown to cause a variety of reproductive anomalies in fish including full sex reversal, intersex, and altered population sex ratios. Two estrogens found in the aquatic environment, 17alpha-ethinylestradiol (EE(2)) and 17beta-estradiol (E(2)), have been measured in wastewater treatment effluents and have been shown to cause adverse effects in fish. To further our understanding of how estrogen exposure affects reproductive endpoints in the male fathead minnow (FHM, Pimephales promelas), a physiologically based computational model was developed of the hypothalamic-pituitary-gonadal (HPG) axis. Apical reproductive endpoints in the model include plasma steroid hormone and vitellogenin concentrations. Using Markov chain Monte Carlo simulation, the model was calibrated with data from unexposed FHM, and FHM exposed to EE(2) and E(2). Independent experimental data sets were used to evaluate model predictions. We found good agreement between our model predictions and a variety of measured reproductive endpoints, although the model underpredicts unexposed FHM reproductive endpoint variances, and overpredicts variances in estrogen-exposed FHM. We conclude that this model provides a robust representation of the HPG axis in male FHM.


Assuntos
Cyprinidae/metabolismo , Estradiol/toxicidade , Etinilestradiol/toxicidade , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Modelos Biológicos , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Calibragem , Simulação por Computador , Hormônios Esteroides Gonadais/sangue , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Cadeias de Markov , Método de Monte Carlo , Análise de Componente Principal , Transdução de Sinais/efeitos dos fármacos , Vitelogeninas/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA