Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Med Internet Res ; 24(8): e30581, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35994313

RESUMO

BACKGROUND: The increasing prevalence of smartphone apps to help people find different services raises the question of whether apps to help people find physical activity (PA) locations would help better prevent and control having overweight or obesity. OBJECTIVE: The aim of this paper is to determine and quantify the potential impact of a digital health intervention for African American women prior to allocating financial resources toward implementation. METHODS: We developed our Virtual Population Obesity Prevention, agent-based model of Washington, DC, to simulate the impact of a place-tailored digital health app that provides information about free recreation center classes on PA, BMI, and overweight and obesity prevalence among African American women. RESULTS: When the app is introduced at the beginning of the simulation, with app engagement at 25% (eg, 25% [41,839/167,356] of women aware of the app; 25% [10,460/41,839] of those aware downloading the app; and 25% [2615/10,460] of those who download it receiving regular push notifications), and a 25% (25/100) baseline probability to exercise (eg, without the app), there are no statistically significant increases in PA levels or decreases in BMI or obesity prevalence over 5 years across the population. When 50% (83,678/167,356) of women are aware of the app; 58.23% (48,725/83,678) of those who are aware download it; and 55% (26,799/48,725) of those who download it receive regular push notifications, in line with existing studies on app usage, introducing the app on average increases PA and decreases weight or obesity prevalence, though the changes are not statistically significant. When app engagement increased to 75% (125,517/167,356) of women who were aware, 75% (94,138/125,517) of those who were aware downloading it, and 75% (70,603/94,138) of those who downloaded it opting into the app's push notifications, there were statistically significant changes in PA participation, minutes of PA and obesity prevalence. CONCLUSIONS: Our study shows that a digital health app that helps identify recreation center classes does not result in substantive population-wide health effects at lower levels of app engagement. For the app to result in statistically significant increases in PA and reductions in obesity prevalence over 5 years, there needs to be at least 75% (125,517/167,356) of women aware of the app, 75% (94,138/125,517) of those aware of the app download it, and 75% (70,603/94,138) of those who download it opt into push notifications. Nevertheless, the app cannot fully overcome lack of access to recreation centers; therefore, public health administrators as well as parks and recreation agencies might consider incorporating this type of technology into multilevel interventions that also target the built environment and other social determinants of health.


Assuntos
Aplicativos Móveis , Negro ou Afro-Americano , Exercício Físico , Feminino , Humanos , Obesidade/epidemiologia , Obesidade/prevenção & controle , Sobrepeso
2.
PLoS One ; 17(5): e0268118, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35522673

RESUMO

BACKGROUND: Many schools have been cutting physical education (PE) classes due to budget constraints, which raises the question of whether policymakers should require schools to offer PE classes. Evidence suggests that PE classes can help address rising physical inactivity and obesity prevalence. However, it would be helpful to determine if requiring PE is cost-effective. METHODS: We developed an agent-based model of youth in Mexico City and the impact of all schools offering PE classes on changes in weight, weight-associated health conditions and the corresponding direct and indirect costs over their lifetime. RESULTS: If schools offer PE without meeting guidelines and instead followed currently observed class length and time active during class, overweight and obesity prevalence decreased by 1.3% (95% CI: 1.0%-1.6%) and was cost-effective from the third-party payer and societal perspectives ($5,058 per disability-adjusted life year [DALY] averted and $5,786/DALY averted, respectively, assuming PE cost $50.3 million). When all schools offered PE classes meeting international guidelines for PE classes, overweight and obesity prevalence decreased by 3.9% (95% CI: 3.7%-4.3%) in the cohort at the end of five years compared to no PE. Long-term, this averted 3,183 and 1,081 obesity-related health conditions and deaths, respectively and averted ≥$31.5 million in direct medical costs and ≥$39.7 million in societal costs, assuming PE classes cost ≤$50.3 million over the five-year period. PE classes could cost up to $185.5 million and $89.9 million over the course of five years and still remain cost-effective and cost saving respectively, from the societal perspective. CONCLUSION: Requiring PE in all schools could be cost-effective when PE class costs, on average, up to $10,340 per school annually. Further, the amount of time students are active during class is a driver of PE classes' value (e.g., it is cost saving when PE classes meet international guidelines) suggesting the need for specific recommendations.


Assuntos
Sobrepeso , Educação Física e Treinamento , Adolescente , Análise Custo-Benefício , Humanos , México/epidemiologia , Obesidade/epidemiologia , Obesidade/prevenção & controle , Sobrepeso/epidemiologia , Sobrepeso/prevenção & controle , Instituições Acadêmicas
3.
Vaccine ; 39(33): 4598-4610, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34238610

RESUMO

INTRODUCTION: Economic evidence on how much it may cost for vaccinators to reach populations is important to plan vaccination programs. Moreover, knowing the incremental costs to reach populations that have traditionally been undervaccinated, especially those hard-to-reach who are facing supply-side barriers to vaccination, is essential to expanding immunization coverage to these populations. METHODS: We conducted a systematic review to identify estimates of costs associated with getting vaccinators to all vaccination sites. We searched PubMed and the Immunization Delivery Cost Catalogue (IDCC) in 2019 for the following costs to vaccinators: (1) training costs; (2) labor costs, per diems, and incentives; (3) identification of vaccine beneficiary location; and (4) travel costs. We assessed if any of these costs were specific to populations that are hard-to-reach for vaccination, based on a framework for examining supply-side barriers to vaccination. RESULTS: We found 19 studies describing average vaccinator training costs at $0.67/person vaccinated or targeted (SD $0.94) and $0.10/dose delivered (SD $0.07). The average cost for vaccinator labor and incentive costs across 29 studies was $2.15/dose (SD $2.08). We identified 13 studies describing intervention costs for a vaccinator to know the location of a beneficiary, with an average cost of $19.69/person (SD $26.65), and six studies describing vaccinator travel costs, with an average cost of $0.07/dose (SD $0.03). Only eight of these studies described hard-to-reach populations for vaccination; two studies examined incremental costs per dose to reach hard-to-reach populations, which were 1.3-2 times higher than the regular costs. The incremental cost to train vaccinators was $0.02/dose, and incremental labor costs for targeting hard-to-reach populations were $0.16-$1.17/dose. CONCLUSION: Additional comparative costing studies are needed to understand the potential differential costs for vaccinators reaching the vaccination sites that serve hard-to-reach populations. This will help immunization program planners and decision-makers better allocate resources to extend vaccination programs.


Assuntos
Vacinação , Vacinas , Humanos , Programas de Imunização , Motivação
4.
Vaccine ; 39(32): 4437-4449, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34218959

RESUMO

INTRODUCTION: Understanding the costs to increase vaccination demand among under-vaccinated populations, as well as costs incurred by beneficiaries and caregivers for reaching vaccination sites, is essential to improving vaccination coverage. However, there have not been systematic analyses documenting such costs for beneficiaries and caregivers seeking vaccination. METHODS: We searched PubMed, Scopus, and the Immunization Delivery Cost Catalogue (IDCC) in 2019 for the costs for beneficiaries and caregivers to 1) seek and know how to access vaccination (i.e., costs to immunization programs for social mobilization and interventions to increase vaccination demand), 2) take time off from work, chores, or school for vaccination (i.e., productivity costs), and 3) travel to vaccination sites. We assessed if these costs were specific to populations that faced other non-cost barriers, based on a framework for defining hard-to-reach and hard-to-vaccinate populations for vaccination. RESULTS: We found 57 studies describing information, education, and communication (IEC) costs, social mobilization costs, and the costs of interventions to increase vaccination demand, with mean costs per dose at $0.41 (standard deviation (SD) $0.83), $18.86 (SD $50.65) and $28.23 (SD $76.09) in low-, middle-, and high-income countries, respectively. Five studies described productivity losses incurred by beneficiaries and caregivers seeking vaccination ($38.33 per person; SD $14.72; n = 3). We identified six studies on travel costs incurred by beneficiaries and caregivers attending vaccination sites ($11.25 per person; SD $9.54; n = 4). Two studies reported social mobilization costs per dose specific to hard-to-reach populations, which were 2-3.5 times higher than costs for the general population. Eight studies described barriers to vaccination among hard-to-reach populations. CONCLUSION: Social mobilization/IEC costs are well-characterized, but evidence is limited on costs incurred by beneficiaries and caregivers getting to vaccination sites. Understanding the potential incremental costs for populations facing barriers to reach vaccination sites is essential to improving vaccine program financing and planning.


Assuntos
Cuidadores , Programas de Imunização , Humanos , Imunização , Vacinação , Cobertura Vacinal
5.
Vaccine ; 39(46): 6796-6804, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34045101

RESUMO

BACKGROUND: Understanding the economics of vaccination is essential to developing immunization strategies that can be employed successfully with limited resources, especially when vaccinating populations that are hard-to-reach. METHODS: Based on the input from interviews with 24 global experts on immunization economics, we developed a systems map of the mechanisms (i.e., necessary steps or components) involved in vaccination, and associated costs and benefits, focused at the service delivery level. We used this to identify the mechanisms that may be different for hard-to-reach populations. RESULTS: The systems map shows different mechanisms that determine whether a person may or may not get vaccinated and the potential health and economic impacts of doing so. The map is divided into two parts: 1) the costs of vaccination, representing each of the mechanisms involved in getting vaccinated (n = 23 vaccination mechanisms), their associated direct vaccination costs (n = 18 vaccination costs), and opportunity costs (n = 5 opportunity costs), 2) the impact of vaccination, representing mechanisms after vaccine delivery (n = 13 impact mechanisms), their associated health effects (n = 10 health effects for beneficiary and others), and economic benefits (n = 13 immediate and secondary economic benefits and costs). Mechanisms that, when interrupted or delayed, can result in populations becoming hard-to-reach include getting vaccines and key stakeholders (e.g., beneficiaries/caregivers, vaccinators) to a vaccination site, as well as vaccine administration at the site. CONCLUSION: Decision-makers can use this systems map to understand where steps in the vaccination process may be interrupted or weak and identify where gaps exist in the understanding of the economics of vaccination. With improved understanding of system-wide effects, this map can help decision-makers inform targeted interventions and policies to increase vaccination coverage in hard-to-reach populations.


Assuntos
Vacinação , Vacinas , Humanos , Imunização , Programas de Imunização , Cobertura Vacinal
6.
J Infect Dis ; 224(6): 938-948, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-33954775

RESUMO

BACKGROUND: With multiple coronavirus disease 2019 (COVID-19) vaccines available, understanding the epidemiologic, clinical, and economic value of increasing coverage levels and expediting vaccination is important. METHODS: We developed a computational model (transmission and age-stratified clinical and economics outcome model) representing the United States population, COVID-19 coronavirus spread (February 2020-December 2022), and vaccination to determine the impact of increasing coverage and expediting time to achieve coverage. RESULTS: When achieving a given vaccination coverage in 270 days (70% vaccine efficacy), every 1% increase in coverage can avert an average of 876 800 (217 000-2 398 000) cases, varying with the number of people already vaccinated. For example, each 1% increase between 40% and 50% coverage can prevent 1.5 million cases, 56 240 hospitalizations, and 6660 deaths; gain 77 590 quality-adjusted life-years (QALYs); and save $602.8 million in direct medical costs and $1.3 billion in productivity losses. Expediting to 180 days could save an additional 5.8 million cases, 215 790 hospitalizations, 26 370 deaths, 206 520 QALYs, $3.5 billion in direct medical costs, and $4.3 billion in productivity losses. CONCLUSIONS: Our study quantifies the potential value of decreasing vaccine hesitancy and increasing vaccination coverage and how this value may decrease with the time it takes to achieve coverage, emphasizing the need to reach high coverage levels as soon as possible, especially before the fall/winter.


Assuntos
Vacinas contra COVID-19/economia , Análise Custo-Benefício , Vacinação/economia , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , Humanos , Modelos Econômicos , SARS-CoV-2 , Estados Unidos , Vacinação/estatística & dados numéricos
7.
Am J Prev Med ; 60(3): 360-368, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33516583

RESUMO

INTRODUCTION: With norovirus vaccine candidates currently under development, now is the time to identify the vaccine characteristics and implementation thresholds at which vaccination becomes cost effective and cost saving in a community setting. METHODS: In 2020, a norovirus transmission, clinical, and economics computational simulation model representing different U.S. population segments was developed to simulate the spread of norovirus and the potential impact of vaccinating children aged <5 years and older adults (aged ≥65 years). RESULTS: Compared with no vaccination, vaccinating preschool-aged children averted 8%-72% of symptomatic norovirus cases in a community, whereas vaccinating older adults averted 2%-29% of symptomatic cases (varying with vaccine efficacy [25%-75%] and vaccination coverage [10%-80%]). Vaccination with a 25% vaccine efficacy was cost effective (incremental cost-effectiveness ratio ≤$50,000 per quality-adjusted life year) when vaccination cost ≤$445 and cost saving at ≤$370 when vaccinating preschool-aged children and ≤$42 and ≤$30, respectively, when vaccinating older adults. With a 50% vaccine efficacy, vaccination was cost effective when it cost ≤$1,190 and cost saving at ≤$930 when vaccinating preschool-aged children and ≤$110 and ≤$64, respectively, when vaccinating older adults. These cost thresholds (cost effective and cost saving, respectively) further increased with a 75% vaccine efficacy to ≤$1,600 and ≤$1,300 for preschool-aged children and ≤$165 and ≤$100 for older adults. CONCLUSIONS: This study outlines thresholds at which a norovirus vaccine would be cost effective and cost saving in the community when vaccinating children aged <5 years and older adults. Establishing these thresholds can help provide decision makers with targets to consider when developing and implementing a norovirus vaccine.


Assuntos
Norovirus , Vacinas , Idoso , Criança , Pré-Escolar , Análise Custo-Benefício , Humanos , Anos de Vida Ajustados por Qualidade de Vida , Vacinação
8.
Health Aff (Millwood) ; 39(6): 927-935, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32324428

RESUMO

With the coronavirus disease 2019 (COVID-19) pandemic, one of the major concerns is the direct medical cost and resource use burden imposed on the US health care system. We developed a Monte Carlo simulation model that represented the US population and what could happen to each person who got infected. We estimated resource use and direct medical costs per symptomatic infection and at the national level, with various "attack rates" (infection rates), to understand the potential economic benefits of reducing the burden of the disease. A single symptomatic COVID-19 case could incur a median direct medical cost of $3,045 during the course of the infection alone. If 80 percent of the US population were to get infected, the result could be a median of 44.6 million hospitalizations, 10.7 million intensive care unit (ICU) admissions, 6.5 million patients requiring a ventilator, 249.5 million hospital bed days, and $654.0 billion in direct medical costs over the course of the pandemic. If 20 percent of the US population were to get infected, there could be a median of 11.2 million hospitalizations, 2.7 million ICU admissions, 1.6 million patients requiring a ventilator, 62.3 million hospital bed days, and $163.4 billion in direct medical costs over the course of the pandemic.


Assuntos
Infecções por Coronavirus/economia , Surtos de Doenças/economia , Custos de Cuidados de Saúde/estatística & dados numéricos , Recursos em Saúde/economia , Custos Hospitalares/estatística & dados numéricos , Pandemias/economia , Pneumonia Viral/economia , COVID-19 , Atenção à Saúde/economia , Surtos de Doenças/estatística & dados numéricos , Feminino , Recursos em Saúde/estatística & dados numéricos , Humanos , Unidades de Terapia Intensiva/economia , Unidades de Terapia Intensiva/estatística & dados numéricos , Tempo de Internação/economia , Masculino , Método de Monte Carlo , Pandemias/estatística & dados numéricos , Estados Unidos
9.
Vaccine ; 38(16): 3261-3270, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32171575

RESUMO

BACKGROUND: Currently, there are no solutions to prevent congenital transmission of Chagas disease during pregnancy, which affects 1-40% of pregnant women in Latin America and is associated with a 5% transmission risk. With therapeutic vaccines under development, now is the right time to determine the economic value of such a vaccine to prevent congenital transmission. METHODS: We developed a computational decision model that represented the clinical outcomes and diagnostic testing strategies for an infant born to a Chagas-positive woman in Mexico and evaluated the impact of vaccination. RESULTS: Compared to no vaccination, a 25% efficacious vaccine averted 125 [95% uncertainty interval (UI): 122-128] congenital cases, 1.9 (95% UI: 1.6-2.2) infant deaths, and 78 (95% UI: 66-91) DALYs per 10,000 infected pregnant women; a 50% efficacious vaccine averted 251 (95% UI: 248-254) cases, 3.8 (95% UI: 3.6-4.2) deaths, and 160 (95% UI: 148-171) DALYs; and a 75% efficacious vaccine averted 376 (95% UI: 374-378) cases, 5.8 (95% UI: 5.5-6.1) deaths, and 238 (95% UI: 227-249) DALYs. A 25% efficacious vaccine was cost-effective (incremental cost-effectiveness ratio <3× Mexico's gross domestic product per capita, <$29,698/DALY averted) when the vaccine cost ≤$240 and ≤$310 and cost-saving when ≤$10 and ≤$80 from the third-party payer and societal perspectives, respectively. A 50% efficacious vaccine was cost-effective when costing ≤$490 and ≤$615 and cost-saving when ≤$25 and ≤$160, from the third-party payer and societal perspectives, respectively. A 75% efficacious vaccine was cost-effective when ≤$720 and ≤$930 and cost-saving when ≤$40 and ≤$250 from the third-party payer and societal perspectives, respectively. Additionally, 13-42 fewer infants progressed to chronic disease, saving $0.41-$1.21 million to society. CONCLUSION: We delineated the thresholds at which therapeutic vaccination of Chagas-positive pregnant women would be cost-effective and cost-saving, providing economic guidance for decision-makers to consider when developing and bringing such a vaccine to market.


Assuntos
Doença de Chagas , Vacinas , Doença de Chagas/prevenção & controle , Análise Custo-Benefício , Feminino , Humanos , Lactente , América Latina , México , Gravidez , Gestantes , Vacinação
10.
Vaccine ; 37(17): 2356-2368, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30914223

RESUMO

INTRODUCTION: The lack of specific policies on how many children must be present at a vaccinating location before a healthcare worker can open a measles-containing vaccine (MCV) - i.e. the vial-opening threshold - has led to inconsistent practices, which can have wide-ranging systems effects. METHODS: Using HERMES-generated simulation models of the routine immunization supply chains of Benin, Mozambique and Niger, we evaluated the impact of different vial-opening thresholds (none, 30% of doses must be used, 60%) and MCV presentations (10-dose, 5-dose) on each supply chain. We linked these outputs to a clinical- and economic-outcomes model which translated the change in vaccine availability to associated infections, medical costs, and DALYs. We calculated the economic impact of each policy from the health system perspective. RESULTS: The vial-opening threshold that maximizes vaccine availability while minimizing costs varies between individual countries. In Benin (median session size = 5), implementing a 30% vial-opening threshold and tailoring distribution of 10-dose and 5-dose MCVs to clinics based on session size is the most cost-effective policy, preventing 671 DALYs ($471/DALY averted) compared to baseline (no threshold, 10-dose MCVs). In Niger (median MCV session size = 9), setting a 60% vial-opening threshold and tailoring MCV presentations is the most cost-effective policy, preventing 2897 DALYs ($16.05/ DALY averted). In Mozambique (median session size = 3), setting a 30% vial-opening threshold using 10-dose MCVs is the only beneficial policy compared to baseline, preventing 3081 DALYs ($85.98/DALY averted). Across all three countries, however, a 30% vial-opening threshold using 10-dose MCVs everywhere is the only MCV threshold that consistently benefits each system compared to baseline. CONCLUSION: While the ideal vial-opening threshold policy for MCV varies by supply chain, implementing a 30% vial-opening threshold for 10-dose MCVs benefits each system by improving overall vaccine availability and reducing associated medical costs and DALYs compared to no threshold.


Assuntos
Análise Custo-Benefício , Programas de Imunização/economia , Vacina contra Sarampo/economia , Sarampo/epidemiologia , Sarampo/prevenção & controle , Modelos Teóricos , Vacinação/economia , Algoritmos , Humanos , Vacina contra Sarampo/administração & dosagem , Vacina contra Sarampo/imunologia , Vacinação/métodos
11.
Vaccine ; 37(4): 637-644, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30578087

RESUMO

BACKGROUND: Frequently, a country will procure a single vaccine vial size, but the question remains whether tailoring the use of different size vaccine vial presentations based on populations or location characteristics within a single country could provide additional benefits, such as reducing open vial wastage (OVW) or reducing missed vaccination opportunities. METHODS: Using the Highly Extensible Resource for Modeling Supply Chains (HERMES) software, we built a simulation model of the Zambia routine vaccine supply chain. At baseline, we distributed 10-dose Measles-Rubella (MR) vials to all locations, and then distributed 5-dose and 1-dose MR vials to (1) all locations, (2) rural districts, (3) rural health facilities, (4) outreach sites, and (5) locations with average MR session sizes <5 and <10 children. We ran sensitivity on each scenario using MR vial opening thresholds of 0% and 50%, i.e. a healthcare worker opens an MR vaccine for any number of children (0%) or if at least half will be used (50%). RESULTS: Replacing 10-dose MR with 5-dose MR vials everywhere led to the largest reduction in MR OVW, saving 573,892 doses (103,161 doses with the 50% vial opening threshold) and improving MR availability by 1% (9%). This scenario, however, increased cold chain utilization and led to a 1% decrease in availability of other vaccines. Tailoring 5-dose MR vials to rural health facilities or based on average session size reduced cold transport constraints, increased total vaccine availability (+1%) and reduced total cost per dose administered (-$0.01) compared to baseline. CONCLUSIONS: In Zambia, tailoring 5-dose MR vials to rural health facilities or by average session size results in the highest total vaccine availability compared to all other scenarios (regardless of OVT policy) by reducing open vial wastage without increasing cold chain utilization.


Assuntos
Simulação por Computador , Programas de Imunização , Vacina contra Sarampo/provisão & distribuição , Vacina contra Rubéola/provisão & distribuição , Vacinas/provisão & distribuição , Criança , Custos e Análise de Custo , Geografia , Pessoal de Saúde , Humanos , Sarampo/prevenção & controle , Vacina contra Sarampo/economia , Refrigeração , Rubéola (Sarampo Alemão)/prevenção & controle , Vacina contra Rubéola/economia , Vacinação/economia , Vacinação/estatística & dados numéricos , Vacinas/economia , Zâmbia
12.
Vaccine ; 37(4): 645-651, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30578088

RESUMO

BACKGROUND: Microneedle patch (MNP) technology is designed to simplify the process of vaccine administration; however, depending on its characteristics, MNP technology may provide additional benefits beyond the point-of-use, particularly for vaccine supply chains. METHODS: Using the HERMES modeling software, we examined replacing four routine vaccines - Measles-containing vaccine (MCV), Tetanus toxoid (TT), Rotavirus (Rota) and Pentavalent (Penta) - with MNP versions in the routine vaccine supply chains of Benin, Bihar (India), and Mozambique. RESULTS: Replacing MCV with an MNP (5 cm3-per-dose, 2-month thermostability, current single-dose price-per-dose) improved MCV availability by 13%, 1% and 6% in Benin, Bihar and Mozambique, respectively, and total vaccine availability by 1% in Benin and Mozambique, while increasing the total cost per dose administered by $0.07 in Benin, $0.56 in Bihar and $0.11 in Mozambique. Replacing TT with an MNP improved TT and total vaccine availability (3% and <1%) in Mozambique only, when the patch was 5 cm3 and 2-months thermostable but increased total cost per dose administered by $0.14. Replacing Rota with an MNP (at 5-15 cm3-per-dose, 1-2 month thermostable) improved Rota and total vaccine availability, but only improved Rota vaccine availability in Bihar (at 5 cm3, 1-2 months thermostable), while decreasing total vaccine availability by 1%. Finally, replacing Penta with an MNP (at 5 cm3, 2-months thermostable) improved Penta vaccine availability by 1-8% and total availability by <1-9%. CONCLUSIONS: An MNP for MCV, TT, Rota, or Penta would need to have a smaller or equal volume-per-dose than existing vaccine formulations and be able to be stored outside the cold chain for a continuous period of at least two months to provide additional benefits to all three supply chains under modeled conditions.


Assuntos
Sistemas de Liberação de Medicamentos , Microinjeções , Adesivo Transdérmico , Vacinação/métodos , Vacinas/administração & dosagem , Vacinas/provisão & distribuição , Benin , Custos e Análise de Custo , Humanos , Programas de Imunização , Índia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/provisão & distribuição , Moçambique , Refrigeração , Vacinas contra Rotavirus/administração & dosagem , Vacinas contra Rotavirus/provisão & distribuição , Toxoide Tetânico/administração & dosagem , Toxoide Tetânico/provisão & distribuição
13.
Vaccine ; 36(46): 7054-7063, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30340884

RESUMO

INTRODUCTION: During an influenza epidemic, where early vaccination is crucial, pharmacies may be a resource to increase vaccine distribution reach and capacity. METHODS: We utilized an agent-based model of the US and a clinical and economics outcomes model to simulate the impact of different influenza epidemics and the impact of utilizing pharmacies in addition to traditional (hospitals, clinic/physician offices, and urgent care centers) locations for vaccination for the year 2017. RESULTS: For an epidemic with a reproductive rate (R0) of 1.30, adding pharmacies with typical business hours averted 11.9 million symptomatic influenza cases, 23,577 to 94,307 deaths, $1.0 billion in direct (vaccine administration and healthcare) costs, $4.2-44.4 billion in productivity losses, and $5.2-45.3 billion in overall costs (varying with mortality rate). Increasing the epidemic severity (R0 of 1.63), averted 16.0 million symptomatic influenza cases, 35,407 to 141,625 deaths, $1.9 billion in direct costs, $6.0-65.5 billion in productivity losses, and $7.8-67.3 billion in overall costs (varying with mortality rate). Extending pharmacy hours averted up to 16.5 million symptomatic influenza cases, 145,278 deaths, $1.9 billion direct costs, $4.1 billion in productivity loss, and $69.5 billion in overall costs. Adding pharmacies resulted in a cost-benefit of $4.1 to $11.5 billion, varying epidemic severity, mortality rate, pharmacy hours, location vaccination rate, and delay in the availability of the vaccine. CONCLUSIONS: Administering vaccines through pharmacies in addition to traditional locations in the event of an epidemic can increase vaccination coverage, mitigating up to 23.7 million symptomatic influenza cases, providing cost-savings up to $2.8 billion to third-party payers and $99.8 billion to society. Pharmacies should be considered as points of dispensing epidemic vaccines in addition to traditional settings as soon as vaccines become available.


Assuntos
Transmissão de Doença Infecciosa/prevenção & controle , Epidemias , Vacinas contra Influenza/administração & dosagem , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Farmácias , Vacinação/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Análise Custo-Benefício , Feminino , Humanos , Lactente , Recém-Nascido , Vacinas contra Influenza/economia , Vacinas contra Influenza/imunologia , Influenza Humana/economia , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Resultado do Tratamento , Estados Unidos/epidemiologia , Vacinação/economia , Cobertura Vacinal , Adulto Jovem
14.
Vaccine ; 36(39): 5879-5885, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30146404

RESUMO

INTRODUCTION: By pairing diluent with vaccines, dual-chamber vaccine injection devices simplify the process of reconstituting vaccines before administration and thus decrease associated open vial wastage and adverse events. However, since these devices are larger than current vaccine vials for lyophilized vaccines, manufacturers need guidance as to how the size of these devices may affect vaccine distribution and delivery. METHODS: Using HERMES-generated immunization supply chain models of Benin, Bihar (India), and Mozambique, we replace the routine 10-dose measles-rubella (MR) lyophilized vaccine with single-dose MR dual-chamber injection devices, ranging the volume-per-dose (5.2-26 cm3) and price-per-dose ($0.70, $1.40). RESULTS: At a volume-per-dose of 5.2 cm3, a dual-chamber injection device results in similar vaccine availability, decreased open vial wastage (OVW), and similar total cost per dose administered as compared to baseline in moderately constrained supply chains. Between volumes of 7.5 cm3 and 26 cm3, these devices lead to a reduction in vaccine availability between 1% and 14% due to increases in cold chain storage utilization between 1% and 7% and increases in average peak transport utilization between 2% and 44%. At the highest volume-per-dose, 26 cm3, vaccine availability decreases between 9% and 14%. The total costs per dose administered varied between each scenario, as decreases in vaccine procurement costs were coupled with decreases in doses administered. However, introduction of a dual-chamber injection device only resulted in improved total cost per dose administered for Benin and Mozambique (at 5.2 cm3 and $0.70-per-dose) when the total number of doses administered changed <1% from baseline. CONCLUSION: In 3 different country supply chains, a single-dose MR dual-chamber injection device would need to be no larger than 5.2 cm3 to not significantly impair the flow of other vaccines.


Assuntos
Injeções/instrumentação , Vacina contra Sarampo/administração & dosagem , Vacina contra Rubéola/administração & dosagem , Vacinação/instrumentação , Benin , Custos e Análise de Custo , Equipamentos e Provisões Hospitalares , Liofilização , Humanos , Programas de Imunização/economia , Índia , Vacina contra Sarampo/economia , Moçambique , Refrigeração , Vacina contra Rubéola/economia , Vacinação/economia
15.
Health Aff (Millwood) ; 36(5): 902-908, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28461358

RESUMO

Increasing physical activity among children is a potentially important public health intervention. Quantifying the economic and health effects of the intervention would help decision makers understand its impact and priority. Using a computational simulation model that we developed to represent all US children ages 8-11 years, we estimated that maintaining the current physical activity levels (only 31.9 percent of children get twenty-five minutes of high-calorie-burning physical activity three times a week) would result each year in a net present value of $1.1 trillion in direct medical costs and $1.7 trillion in lost productivity over the course of their lifetimes. If 50 percent of children would exercise, the number of obese and overweight youth would decrease by 4.18 percent, averting $8.1 billion in direct medical costs and $13.8 billion in lost productivity. Increasing the proportion of children who exercised to 75 percent would avert $16.6 billion and $23.6 billion, respectively.


Assuntos
Efeitos Psicossociais da Doença , Exercício Físico/fisiologia , Custos de Cuidados de Saúde/tendências , Criança , Eficiência , Humanos , Modelos Estatísticos , Obesidade Infantil/economia , Obesidade Infantil/prevenção & controle
16.
PLoS Negl Trop Dis ; 11(4): e0005531, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28448488

RESUMO

BACKGROUND: As the Zika virus epidemic continues to spread internationally, countries such as the United States must determine how much to invest in prevention, control, and response. Fundamental to these decisions is quantifying the potential economic burden of Zika under different scenarios. METHODOLOGY/PRINCIPLE FINDINGS: To inform such decision making, our team developed a computational model to forecast the potential economic burden of Zika across six states in the US (Alabama, Florida, Georgia, Louisiana, Mississippi, and Texas) which are at greatest risk of Zika emergence, under a wide range of attack rates, scenarios and circumstances. In order to accommodate a wide range of possibilities, different scenarios explored the effects of varying the attack rate from 0.01% to 10%. Across the six states, an attack rate of 0.01% is estimated to cost $183.4 million to society ($117.1 million in direct medical costs and $66.3 million in productivity losses), 0.025% would result in $198.6 million ($119.4 million and $79.2 million), 0.10% would result in $274.6 million ($130.8 million and $143.8 million) and 1% would result in $1.2 billion ($268.0 million and $919.2 million). CONCLUSIONS: Our model and study show how direct medical costs, Medicaid costs, productivity losses, and total costs to society may vary with different attack rates across the six states and the circumstances at which they may exceed certain thresholds (e.g., Zika prevention and control funding allocations that are being debated by the US government). A Zika attack rate of 0.3% across the six states at greatest risk of Zika infection, would result in total costs that exceed $0.5 billion, an attack rate of 1% would exceed $1 billion, and an attack rate of 2% would exceed $2 billion.


Assuntos
Efeitos Psicossociais da Doença , Custos de Cuidados de Saúde , Infecção por Zika virus/economia , Infecção por Zika virus/epidemiologia , Simulação por Computador , Feminino , Humanos , Gravidez , Estados Unidos/epidemiologia
17.
Vaccine ; 35(23): 3135-3142, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28455169

RESUMO

BACKGROUND: While our previous work has shown that replacing existing vaccines with thermostable vaccines can relieve bottlenecks in vaccine supply chains and thus increase vaccine availability, the question remains whether this benefit would outweigh the additional cost of thermostable formulations. METHODS: Using HERMES simulation models of the vaccine supply chains for the Republic of Benin, the state of Bihar (India), and Niger, we simulated replacing different existing vaccines with thermostable formulations and determined the resulting clinical and economic impact. Costs measured included the costs of vaccines, logistics, and disease outcomes averted. RESULTS: Replacing a particular vaccine with a thermostable version yielded cost savings in many cases even when charging a price premium (two or three times the current vaccine price). For example, replacing the current pentavalent vaccine with a thermostable version without increasing the vaccine price saved from $366 to $10,945 per 100 members of the vaccine's target population. Doubling the vaccine price still resulted in cost savings that ranged from $300 to $10,706, and tripling the vaccine price resulted in cost savings from $234 to $10,468. As another example, a thermostable rotavirus vaccine (RV) at its current (year) price saved between $131 and $1065. Doubling and tripling the thermostable rotavirus price resulted in cost savings ranging from $102 to $936 and $73 to $808, respectively. Switching to thermostable formulations was highly cost-effective or cost-effective in most scenarios explored. CONCLUSION: Medical cost and productivity savings could outweigh even significant price premiums charged for thermostable formulations of vaccines, providing support for their use.


Assuntos
Vacinas contra Rotavirus/economia , Vacinas contra Rotavirus/provisão & distribuição , Potência de Vacina , Benin/epidemiologia , Simulação por Computador , Análise Custo-Benefício , Humanos , Índia/epidemiologia , Lactente , Níger/epidemiologia , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/prevenção & controle , Temperatura
18.
Vaccine ; 35(17): 2224-2228, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28364935

RESUMO

BACKGROUND: Gavi recommends solar refrigerators for vaccine storage in areas with less than eight hours of electricity per day, and WHO guidelines are more conservative. The question remains: Can solar refrigerators provide value where electrical outages are less frequent? METHODS: Using a HERMES-generated computational model of the Mozambique routine immunization supply chain, we simulated the use of solar versus electric mains-powered refrigerators (hereafter referred to as "electric refrigerators") at different locations in the supply chain under various circumstances. RESULTS: At their current price premium, the annual cost of each solar refrigerator is 132% more than each electric refrigerator at the district level and 241% more at health facilities. Solar refrigerators provided savings over electric refrigerators when one-day electrical outages occurred more than five times per year at either the district level or the health facilities, even when the electric refrigerator holdover time exceeded the duration of the outage. Two-day outages occurring more than three times per year at the district level or more than twice per year at the health facilities also caused solar refrigerators to be cost saving. Lowering the annual cost of a solar refrigerator to 75% more than an electric refrigerator allowed solar refrigerators to be cost saving at either level when one-day outages occurred more than once per year, or when two-day outages occurred more than once per year at the district level or even once per year at the health facilities. CONCLUSION: Our study supports WHO and Gavi guidelines. In fact, solar refrigerators may provide savings in total cost per dose administered over electrical refrigerators when electrical outages are less frequent. Our study identified the frequency and duration at which electrical outages need to occur for solar refrigerators to provide savings in total cost per dose administered over electric refrigerators at different solar refrigerator prices.


Assuntos
Armazenamento de Medicamentos/economia , Armazenamento de Medicamentos/métodos , Refrigeração/economia , Refrigeração/métodos , Simulação por Computador , Humanos , Moçambique
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA