Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 188: 109713, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32535355

RESUMO

The pharmaceutical and personal care products (PPCPs) in aquatic environment have aroused more interest recently. Many of them are hard to degrade by the typical biological treatments. Diclofenac (DCF), as a significant anti-inflammatory drug, is a typical PPCP and widely existed in water environment. It is reported that DCF has adverse effects on aquatic organisms. This work aims to investigate the mechanism, kinetics and ecotoxicity assessment of DCF transformation initiated by O3 in aqueous solution, and provide a solution to the degradation of DCF. The O3-initiated oxidative degradations of DCF were performed by quantum chemical calculations, including thirteen primary reaction pathways and subsequent reactions of the Criegee intermediates with H2O, NO and O3. Based on the thermodynamic data, the kinetic parameters were calculated by the transition state theory (TST). The total reaction rate constant of DCF initiated by O3 is 2.57 × 103 M-1 s-1 at 298 K and 1 atm. The results show that the reaction rate constants have a good correlation with temperature. The acute and chronic toxicities of DCF and its degradation products were evaluated at three different trophic levels by the ECOSAR program. Most products are converted into less toxic or harmless products. Oxalaldehyde (P3) and N-(2,6-dichlorophenyl)-2-oxoacetamide (P6) are still harmful to the three aquatic organisms, which should be paid more attention in the future.


Assuntos
Ozônio , Poluentes Químicos da Água , Diclofenaco/toxicidade , Cinética , Oxirredução , Ozônio/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
2.
Sci Total Environ ; 544: 987-94, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26706770

RESUMO

Coupling polydimethylsiloxane (PDMS)-based equilibrium passive sampling with chemical and bioassay analysis, we assessed aryl hydrocarbon receptor (AhR)-mediated activity and contributing chemicals in sediment from Lake Tai Basin, Eastern China. The bioanalytical equivalent concentrations (BEQs) of AhR-active chemicals for the exhaustive (total burden) and PDMS extracts (bioavailable fractions) ranged from <9.5-300 ng TCDD-EQ/ kgdry weight (dw) and <0.096-2.2 ng TCDD-EQ/kgdw, respectively, which were of average levels compared to those reported elsewhere. The total concentrations of PAHs in sediment and PDMS were 17-4700 µg/kgdw and 0.61-10 µg/kgdw, respectively. The majority of the exhaustive extracts subject to acid treatment showed >70% decline in AhR-mediated activity, suggesting the minor contribution by persistent AhR ligands. Targeted analysis of polycyclic aromatic hydrocarbons (PAHs) showed, however, that these chemicals contributed <40% to the overall effect in both exhaustive and PDMS extracts, indicating the presence of other labile AhR ligands. The concentrations of PAHs and BEQs of the AhR-mediated activity attributed to these chemicals in the exhaustive extracts can be back calculated from those in the PDMS extracts via a general organic carbon-PDMS partition coefficient. Similar quantitative conversion between PDMS and aquatic organisms was also verified for aquatic organisms via the lipid-PDMS partition coefficient. Therefore, our study provided a first insight into the quantitative links between bulk chemical burdens in sediment, chemical bioavailability, bioaccumulation potential and resulting mixture effects, as an integral part of predictive environmental risk assessment of contaminated sediment.


Assuntos
Monitoramento Ambiental/métodos , Lagos/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Receptores de Hidrocarboneto Arílico/análise , Poluentes Químicos da Água/análise , China , Sedimentos Geológicos/química , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA