Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Wound Repair Regen ; 27(2): 139-149, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30576033

RESUMO

Cutaneous wounds caused by an exposure to high doses of ionizing radiation remain a therapeutic challenge. While new experimental strategies for treatment are being developed, there are currently no off-the-shelf therapies for the treatment of cutaneous radiation injury that have been proven to promote repair of the damaged tissues. Plasma-based biomaterials are biologically active biomaterials made from platelet enriched plasma, which can be made into both solid and semi-solid forms, are inexpensive, and are available as off-the-shelf, nonrefrigerated products. In this study, the use of plasma-based biomaterials for the mitigation of acute and late toxicity for cutaneous radiation injury was investigated using a mouse model. A 2-cm diameter circle of the dorsal skin was irradiated with a single dose of 35 Gy followed by topical treatment with plasma-based biomaterial or vehicle once daily for 5 weeks postirradiation. Weekly imaging demonstrated more complete wound resolution in the plasma-based biomaterial vs. vehicle group which became statistically significant (p < 0.05) at weeks 12, 13, and 14 postmaximum wound area. Despite more complete wound healing, at 9 and 17 weeks postirradiation, there was no statistically significant difference in collagen deposition or skin thickness between the plasma-based biomaterial and vehicle groups based on Masson trichrome staining nor was there a statistically significant difference in inflammatory or fibrosis-related gene expression between the groups. Although significant improvement was not observed for late toxicity, plasma-based biomaterials were effective at promoting wound closure, thus helping to mitigate acute toxicity.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Plasma Rico em Plaquetas , Lesões por Radiação/patologia , Lesões por Radiação/terapia , Pele/patologia , Animais , Materiais Biocompatíveis/farmacologia , Análise Custo-Benefício , Modelos Animais de Doenças , Masculino , Camundongos , Cicatrização
2.
J Appl Clin Med Phys ; 15(4): 4832, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-25207411

RESUMO

We present commissioning and comprehensive evaluation for ArcCHECK as a QA equipment for volumetric-modulated arc therapy (VMAT), using the 6 MV photon beam with and without the flattening filter, and the SNC patient software (version 6.2). In addition to commissioning involving absolute dose calibration, array calibration, and PMMA density verification, ArcCHECK was evaluated for its response dependency on linac dose rate, instantaneous dose rate, radiation field size, beam angle, and couch insertion. Scatter dose characterization, consistency and symmetry of response, and dosimetry accuracy evaluation for fixed aperture arcs and clinical VMAT patient plans were also investigated. All the evaluation tests were performed with the central plug inserted and the homogeneous PMMA density value. Results of gamma analysis demonstrated an overall agreement between ArcCHECK-measured and TPS-calculated reference doses. The diode based field size dependency was found to be within 0.5% of the reference. The dose rate-based dependency was well within 1% of the TPS reference, and the angular dependency was found to be ± 3% of the reference, as tested for BEV angles, for both beams. Dosimetry of fixed arcs, using both narrow and wide field widths, resulted in clinically acceptable global gamma passing rates on the 3%/3mm level and 10% threshold. Dosimetry of narrow arcs showed an improvement over published literature. The clinical VMAT cases demonstrated high level of dosimetry accuracy in gamma passing rates.


Assuntos
Garantia da Qualidade dos Cuidados de Saúde/normas , Radiometria/instrumentação , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia de Intensidade Modulada/normas , Calibragem , Humanos , Método de Monte Carlo , Aceleradores de Partículas , Radiometria/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/instrumentação , Radioterapia de Intensidade Modulada/métodos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA