Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Regul Toxicol Pharmacol ; 103: 301-313, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30794837

RESUMO

Deriving human health risk estimates for environmental chemicals has traditionally relied on in vivo toxicity databases to characterize potential adverse health effects and associated dose-response relationships. In the absence of in vivo toxicity information, new approach methods (NAMs) such as read-across have the potential to fill the required data gaps. This case study applied an expert-driven read-across approach to identify and evaluate analogues to fill non-cancer oral toxicity data gaps for p,p'-dichlorodiphenyldichloroethane (p,p'-DDD), an organochlorine contaminant known to occur at contaminated sites in the U.S. The source analogue p,p'-dichlorodiphenyltrichloroethane (DDT) and its no-observed-adverse-effect level of 0.05 mg/kg-day were proposed for the derivation of screening-level health reference values for the target chemical, p,p'-DDD. Among the primary similarity contexts (structure, toxicokinetics, and toxicodynamics), toxicokinetic considerations were instrumental in separating p,p'-DDT as the best source analogue from other potential candidates (p,p'-DDE and methoxychlor). In vitro high-throughput screening (HTS) assays from ToxCast were used to evaluate similarity in bioactivity profiles and make inferences toward plausible mechanisms of toxicity to build confidence in the read-across approach. This work demonstrated the value of NAMs such as read-across and in vitro HTS in human health risk assessment of environmental contaminants with the potential to inform regulatory decision-making.


Assuntos
Diclorodifenildicloroetano/efeitos adversos , Poluentes Ambientais/efeitos adversos , Inseticidas/efeitos adversos , Monitoramento Ambiental , Ensaios de Triagem em Larga Escala , Humanos , Medição de Risco
2.
Toxicol Sci ; 157(1): 85-99, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28123101

RESUMO

The rate of new chemical development in commerce combined with a paucity of toxicity data for legacy chemicals presents a unique challenge for human health risk assessment. There is a clear need to develop new technologies and incorporate novel data streams to more efficiently inform derivation of toxicity values. One avenue of exploitation lies in the field of transcriptomics and the application of gene expression analysis to characterize biological responses to chemical exposures. In this context, gene set enrichment analysis (GSEA) was employed to evaluate tissue-specific, dose-response gene expression data generated following exposure to multiple chemicals for various durations. Patterns of transcriptional enrichment were evident across time and with increasing dose, and coordinated enrichment plausibly linked to the etiology of the biological responses was observed. GSEA was able to capture both transient and sustained transcriptional enrichment events facilitating differentiation between adaptive versus longer term molecular responses. When combined with benchmark dose (BMD) modeling of gene expression data from key drivers of biological enrichment, GSEA facilitated characterization of dose ranges required for enrichment of biologically relevant molecular signaling pathways, and promoted comparison of the activation dose ranges required for individual pathways. Median transcriptional BMD values were calculated for the most sensitive enriched pathway as well as the overall median BMD value for key gene members of significantly enriched pathways, and both were observed to be good estimates of the most sensitive apical endpoint BMD value. Together, these efforts support the application of GSEA to qualitative and quantitative human health risk assessment.


Assuntos
Redes Reguladoras de Genes , Medição de Risco , Transcriptoma/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley
3.
Environ Health Perspect ; 124(11): 1671-1682, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27091369

RESUMO

BACKGROUND: The Next Generation (NexGen) of Risk Assessment effort is a multi-year collaboration among several organizations evaluating new, potentially more efficient molecular, computational, and systems biology approaches to risk assessment. This article summarizes our findings, suggests applications to risk assessment, and identifies strategic research directions. OBJECTIVE: Our specific objectives were to test whether advanced biological data and methods could better inform our understanding of public health risks posed by environmental exposures. METHODS: New data and methods were applied and evaluated for use in hazard identification and dose-response assessment. Biomarkers of exposure and effect, and risk characterization were also examined. Consideration was given to various decision contexts with increasing regulatory and public health impacts. Data types included transcriptomics, genomics, and proteomics. Methods included molecular epidemiology and clinical studies, bioinformatic knowledge mining, pathway and network analyses, short-duration in vivo and in vitro bioassays, and quantitative structure activity relationship modeling. DISCUSSION: NexGen has advanced our ability to apply new science by more rapidly identifying chemicals and exposures of potential concern, helping characterize mechanisms of action that influence conclusions about causality, exposure-response relationships, susceptibility and cumulative risk, and by elucidating new biomarkers of exposure and effects. Additionally, NexGen has fostered extensive discussion among risk scientists and managers and improved confidence in interpreting and applying new data streams. CONCLUSIONS: While considerable uncertainties remain, thoughtful application of new knowledge to risk assessment appears reasonable for augmenting major scope assessments, forming the basis for or augmenting limited scope assessments, and for prioritization and screening of very data limited chemicals. Citation: Cote I, Andersen ME, Ankley GT, Barone S, Birnbaum LS, Boekelheide K, Bois FY, Burgoon LD, Chiu WA, Crawford-Brown D, Crofton KM, DeVito M, Devlin RB, Edwards SW, Guyton KZ, Hattis D, Judson RS, Knight D, Krewski D, Lambert J, Maull EA, Mendrick D, Paoli GM, Patel CJ, Perkins EJ, Poje G, Portier CJ, Rusyn I, Schulte PA, Simeonov A, Smith MT, Thayer KA, Thomas RS, Thomas R, Tice RR, Vandenberg JJ, Villeneuve DL, Wesselkamper S, Whelan M, Whittaker C, White R, Xia M, Yauk C, Zeise L, Zhao J, DeWoskin RS. 2016. The Next Generation of Risk Assessment multiyear study-highlights of findings, applications to risk assessment, and future directions. Environ Health Perspect 124:1671-1682; http://dx.doi.org/10.1289/EHP233.


Assuntos
Monitoramento Ambiental/métodos , Medição de Risco/métodos , Poluentes Ambientais/toxicidade , Saúde Pública/métodos , Saúde Pública/tendências , Medição de Risco/tendências
4.
Int J Toxicol ; 34(5): 384-92, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26268770

RESUMO

Although several studies have shown that chemically mediated epigenetic changes are an etiological factor in several human disease conditions, the utility of epigenetic data, such as DNA methylation, in the current human health risk assessment paradigm is unclear. The objective of this study is to investigate the relationship between the points of departure (PODs) for cancer incidence and DNA methylation changes in laboratory animals exposed to the following environmental toxicants: bromodichloromethane, dibromochloromethane, chloroform, hydrazine, trichloroethylene, benzidine, trichloroacetic acid, and di(2-ethylhexyl) phthalate (DEHP; a known reproductive toxicant). The results demonstrate that the PODs for cancer incidence and altered DNA methylation are similar. Furthermore, based on the available data, the POD for DNA methylation appeared more sensitive compared to that for cancer incidence following the administration of DEHP to rats during different life stages. The high degree of correlation between PODs for cancer incidence and DNA methylation (for both total DNA and individual genes) suggests that DNA methylation end points could potentially be used as a screening tool in predicting the potential toxicity/carcinogenicity and in prioritizing large numbers of chemicals with sparse toxicity databases. The life stage during which treatment occurs is also an important consideration when assessing the potential application of epigenetic end points as a screening tool.


Assuntos
Carcinógenos/toxicidade , Metilação de DNA , Epigênese Genética , Animais , Benzidinas/toxicidade , Dietilexilftalato/toxicidade , Humanos , Hidrazinas/toxicidade , Hidrocarbonetos Halogenados/toxicidade , Neoplasias/induzido quimicamente , Neoplasias/genética , Medição de Risco
5.
Toxicol Sci ; 136(1): 4-18, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23958734

RESUMO

Based on existing data and previous work, a series of studies is proposed as a basis toward a pragmatic early step in transforming toxicity testing. These studies were assembled into a data-driven framework that invokes successive tiers of testing with margin of exposure (MOE) as the primary metric. The first tier of the framework integrates data from high-throughput in vitro assays, in vitro-to-in vivo extrapolation (IVIVE) pharmacokinetic modeling, and exposure modeling. The in vitro assays are used to separate chemicals based on their relative selectivity in interacting with biological targets and identify the concentration at which these interactions occur. The IVIVE modeling converts in vitro concentrations into external dose for calculation of the point of departure (POD) and comparisons to human exposure estimates to yield a MOE. The second tier involves short-term in vivo studies, expanded pharmacokinetic evaluations, and refined human exposure estimates. The results from the second tier studies provide more accurate estimates of the POD and the MOE. The third tier contains the traditional animal studies currently used to assess chemical safety. In each tier, the POD for selective chemicals is based primarily on endpoints associated with a proposed mode of action, whereas the POD for nonselective chemicals is based on potential biological perturbation. Based on the MOE, a significant percentage of chemicals evaluated in the first 2 tiers could be eliminated from further testing. The framework provides a risk-based and animal-sparing approach to evaluate chemical safety, drawing broadly from previous experience but incorporating technological advances to increase efficiency.


Assuntos
Alternativas aos Testes com Animais/tendências , Mineração de Dados/tendências , Bases de Dados de Compostos Químicos/tendências , Bases de Dados de Produtos Farmacêuticos/tendências , Testes de Toxicidade/tendências , Animais , Relação Dose-Resposta a Droga , Previsões , Ensaios de Triagem em Larga Escala/tendências , Humanos , Modelos Animais , Modelos Biológicos , Testes de Mutagenicidade/tendências , Farmacocinética , Medição de Risco , Fatores de Risco
6.
Toxicol Sci ; 134(1): 180-94, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23596260

RESUMO

The number of legacy chemicals without toxicity reference values combined with the rate of new chemical development is overwhelming the capacity of the traditional risk assessment paradigm. More efficient approaches are needed to quantitatively estimate chemical risks. In this study, rats were dosed orally with multiple doses of six chemicals for 5 days and 2, 4, and 13 weeks. Target organs were analyzed for traditional histological and organ weight changes and transcriptional changes using microarrays. Histological and organ weight changes in this study and the tumor incidences in the original cancer bioassays were analyzed using benchmark dose (BMD) methods to identify noncancer and cancer points of departure. The dose-response changes in gene expression were also analyzed using BMD methods and the responses grouped based on signaling pathways. A comparison of transcriptional BMD values for the most sensitive pathway with BMD values for the noncancer and cancer apical endpoints showed a high degree of correlation at all time points. When the analysis included data from an earlier study with eight additional chemicals, transcriptional BMD values for the most sensitive pathway were significantly correlated with noncancer (r = 0.827, p = 0.0031) and cancer-related (r = 0.940, p = 0.0002) BMD values at 13 weeks. The average ratio of apical-to-transcriptional BMD values was less than two, suggesting that for the current chemicals, transcriptional perturbation did not occur at significantly lower doses than apical responses. Based on our results, we propose a practical framework for application of transcriptomic data to chemical risk assessment.


Assuntos
Testes de Carcinogenicidade/métodos , Carcinógenos/toxicidade , Medição de Risco/métodos , Transdução de Sinais , Transcriptoma , Animais , Carcinógenos/química , Relação Dose-Resposta a Droga , Determinação de Ponto Final , Feminino , Masculino , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Especificidade de Órgãos , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
7.
Regul Toxicol Pharmacol ; 63(1): 10-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22369873

RESUMO

Hazard identification and dose-response assessment for chemicals of concern found in various environmental media are typically based on epidemiological and/or animal toxicity data. However, human health risk assessments are often requested for many compounds found at contaminated sites throughout the US that have limited or no available toxicity information from either humans or animals. To address this issue, recent efforts have focused on expanding the use of structure-activity relationships (SAR) approaches to identify appropriate surrogates and/or predict toxicological phenotype(s) and associated adverse effect levels. A tiered surrogate approach (i.e., decision tree) based on three main types of surrogates (structural, metabolic, and toxicity-like) has been developed. To select the final surrogate chemical and its surrogate toxicity value(s), a weight-of-evidence approach based on the proposed decision tree is applied. In addition, a case study with actual toxicity data serves as the evaluation to support our tiered surrogate approach. Future work will include case studies demonstrating the utility of the surrogate approach under different scenarios for data-poor chemicals. In conclusion, our surrogate approach provides a reasonable starting point for identifying potential toxic effects, target organs, and/or modes-of-action, and for selecting surrogate chemicals from which to derive either reference or risk values.


Assuntos
Poluentes Ambientais/toxicidade , Medição de Risco/métodos , Animais , Derivados de Benzeno/toxicidade , Árvores de Decisões , Humanos
8.
Toxicol Sci ; 120(1): 194-205, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21097997

RESUMO

The traditional approach for estimating noncancer and cancer reference values in quantitative chemical risk assessment is time and resource intensive. The extent and nature of the studies required under the traditional approach has limited the number of chemicals with published risk assessments. In this study, female mice were exposed for 13 weeks to multiple concentrations of five chemicals that were positive in a 2-year cancer bioassay. Traditional histological and organ weight changes were evaluated, and gene expression microarray analysis was performed on the target tissues. The histological, organ weight changes, and the original tumor incidences in the original cancer bioassay were analyzed using standard benchmark dose (BMD) methods to identify noncancer and cancer points of departure, respectively. The dose-related changes in gene expression were also analyzed using a BMD approach and the responses grouped based on cellular biological processes. A comparison of the transcriptional BMD values with those for the traditional noncancer and cancer apical endpoints showed a high degree of correlation for specific cellular biological processes. For chemicals with human exposure data, the transcriptional BMD values were also used to calculate a margin of exposure. The margins of exposure ranged from 1900 to 54,000. Both the correlation between the BMD values for the transcriptional and apical endpoints and the margin of exposure analysis suggest that transcriptional BMD values may be used as potential points of departure for noncancer and cancer risk assessment.


Assuntos
Carcinógenos Ambientais/toxicidade , Determinação de Ponto Final , Neoplasias/induzido quimicamente , Transcrição Gênica/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Testes de Carcinogenicidade/métodos , Interpretação Estatística de Dados , Relação Dose-Resposta a Droga , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/genética , Pulmão/efeitos dos fármacos , Pulmão/patologia , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Camundongos , Camundongos Endogâmicos , Neoplasias/genética , Neoplasias/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Tamanho do Órgão/efeitos dos fármacos , Valores de Referência , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA