Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Clin Pharmacol Ther ; 111(2): 404-415, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34605015

RESUMO

Quantitative prediction of drug-drug interactions (DDIs) involving organic anion transporting polypeptide (OATP)1B1/1B3 inhibition is limited by uncertainty in the translatability of experimentally determined in vitro inhibition potency (half-maximal inhibitory concentration (IC50 )). This study used an OATP1B endogenous biomarker-informed physiologically-based pharmacokinetic (PBPK) modeling approach to predict the effect of inhibitor drugs on the pharmacokinetics (PKs) of OATP1B substrates. Initial static analysis with about 42 inhibitor drugs, using in vitro IC50 values and unbound liver inlet concentrations (Iin,max,u ), suggested in vivo OATP1B inhibition risk for drugs with R-value (1+ Iin,max,u /IC50 ) above 1.5. A full-PBPK model accounting for transporter-mediated hepatic disposition was developed for coproporphyrin I (CP-I), an endogenous OATP1B biomarker. For several inhibitors (cyclosporine, diltiazem, fenebrutinib, GDC-0810, itraconazole, probenecid, and rifampicin at 3 different doses), PBPK models were developed and verified against available CP-I plasma exposure data to obtain in vivo OATP1B inhibition potency-which tend to be lower than the experimentally measured in vitro IC50 by about 2-fold (probenecid and rifampicin) to 37-fold (GDC-0810). Models verified with CP-I data are subsequently used to predict DDIs with OATP1B probe drugs, rosuvastatin and pitavastatin. The predicted and observed area under the plasma concentration-time curve ratios are within 20% error in 55% cases, and within 30% error in 89% cases. Collectively, this comprehensive study illustrates the adequacy and utility of endogenous biomarker-informed PBPK modeling in mechanistic understanding and quantitative predictions of OATP1B-mediated DDIs in drug development.


Assuntos
Atorvastatina/farmacocinética , Coproporfirinas/sangue , Transportador 1 de Ânion Orgânico Específico do Fígado/antagonistas & inibidores , Fígado/efeitos dos fármacos , Moduladores de Transporte de Membrana/farmacologia , Modelos Biológicos , Rosuvastatina Cálcica/farmacocinética , Biomarcadores/sangue , Simulação por Computador , Interações Medicamentosas , Células HEK293 , Humanos , Fígado/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Medição de Risco , Fatores de Risco
3.
J Vis Exp ; (80): e51006, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24192514

RESUMO

This protocol includes the designs and software necessary to upgrade an existing stereotaxic instrument to a robotic (CNC) stereotaxic instrument for around $1,000 (excluding a drill), using industry standard stepper motors and CNC controlling software. Each axis has variable speed control and may be operated simultaneously or independently. The robot's flexibility and open coding system (g-code) make it capable of performing custom tasks that are not supported by commercial systems. Its applications include, but are not limited to, drilling holes, sharp edge craniotomies, skull thinning, and lowering electrodes or cannula. In order to expedite the writing of g-coding for simple surgeries, we have developed custom scripts that allow individuals to design a surgery with no knowledge of programming. However, for users to get the most out of the motorized stereotax, it would be beneficial to be knowledgeable in mathematical programming and G-Coding (simple programming for CNC machining). The recommended drill speed is greater than 40,000 rpm. The stepper motor resolution is 1.8°/Step, geared to 0.346°/Step. A standard stereotax has a resolution of 2.88 µm/step. The maximum recommended cutting speed is 500 µm/sec. The maximum recommended jogging speed is 3,500 µm/sec. The maximum recommended drill bit size is HP 2.


Assuntos
Robótica/instrumentação , Técnicas Estereotáxicas/instrumentação , Animais , Craniotomia/instrumentação , Craniotomia/métodos , Desenho de Equipamento , Robótica/economia , Robótica/métodos , Roedores , Software , Técnicas Estereotáxicas/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA