Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Lancet Digit Health ; 3(12): e784-e794, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34688602

RESUMO

BACKGROUND: Gadolinium-based contrast agents (GBCAs) are widely used to enhance tissue contrast during MRI scans and play a crucial role in the management of patients with cancer. However, studies have shown gadolinium deposition in the brain after repeated GBCA administration with yet unknown clinical significance. We aimed to assess the feasibility and diagnostic value of synthetic post-contrast T1-weighted MRI generated from pre-contrast MRI sequences through deep convolutional neural networks (dCNN) for tumour response assessment in neuro-oncology. METHODS: In this multicentre, retrospective cohort study, we used MRI examinations to train and validate a dCNN for synthesising post-contrast T1-weighted sequences from pre-contrast T1-weighted, T2-weighted, and fluid-attenuated inversion recovery sequences. We used MRI scans with availability of these sequences from 775 patients with glioblastoma treated at Heidelberg University Hospital, Heidelberg, Germany (775 MRI examinations); 260 patients who participated in the phase 2 CORE trial (1083 MRI examinations, 59 institutions); and 505 patients who participated in the phase 3 CENTRIC trial (3147 MRI examinations, 149 institutions). Separate training runs to rank the importance of individual sequences and (for a subset) diffusion-weighted imaging were conducted. Independent testing was performed on MRI data from the phase 2 and phase 3 EORTC-26101 trial (521 patients, 1924 MRI examinations, 32 institutions). The similarity between synthetic and true contrast enhancement on post-contrast T1-weighted MRI was quantified using the structural similarity index measure (SSIM). Automated tumour segmentation and volumetric tumour response assessment based on synthetic versus true post-contrast T1-weighted sequences was performed in the EORTC-26101 trial and agreement was assessed with Kaplan-Meier plots. FINDINGS: The median SSIM score for predicting contrast enhancement on synthetic post-contrast T1-weighted sequences in the EORTC-26101 test set was 0·818 (95% CI 0·817-0·820). Segmentation of the contrast-enhancing tumour from synthetic post-contrast T1-weighted sequences yielded a median tumour volume of 6·31 cm3 (5·60 to 7·14), thereby underestimating the true tumour volume by a median of -0·48 cm3 (-0·37 to -0·76) with the concordance correlation coefficient suggesting a strong linear association between tumour volumes derived from synthetic versus true post-contrast T1-weighted sequences (0·782, 0·751-0·807, p<0·0001). Volumetric tumour response assessment in the EORTC-26101 trial showed a median time to progression of 4·2 months (95% CI 4·1-5·2) with synthetic post-contrast T1-weighted and 4·3 months (4·1-5·5) with true post-contrast T1-weighted sequences (p=0·33). The strength of the association between the time to progression as a surrogate endpoint for predicting the patients' overall survival in the EORTC-26101 cohort was similar when derived from synthetic post-contrast T1-weighted sequences (hazard ratio of 1·749, 95% CI 1·282-2·387, p=0·0004) and model C-index (0·667, 0·622-0·708) versus true post-contrast T1-weighted MRI (1·799, 95% CI 1·314-2·464, p=0·0003) and model C-index (0·673, 95% CI 0·626-0·711). INTERPRETATION: Generating synthetic post-contrast T1-weighted MRI from pre-contrast MRI using dCNN is feasible and quantification of the contrast-enhancing tumour burden from synthetic post-contrast T1-weighted MRI allows assessment of the patient's response to treatment with no significant difference by comparison with true post-contrast T1-weighted sequences with administration of GBCAs. This finding could guide the application of dCNN in radiology to potentially reduce the necessity of GBCA administration. FUNDING: Deutsche Forschungsgemeinschaft.


Assuntos
Neoplasias Encefálicas/diagnóstico , Encéfalo/patologia , Meios de Contraste/administração & dosagem , Aprendizado Profundo , Gadolínio/administração & dosagem , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Algoritmos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Imagem de Difusão por Ressonância Magnética , Progressão da Doença , Estudos de Viabilidade , Alemanha , Glioblastoma/diagnóstico , Glioblastoma/diagnóstico por imagem , Humanos , Pessoa de Meia-Idade , Neoplasias , Prognóstico , Radiologia/métodos , Estudos Retrospectivos , Carga Tumoral
2.
Clin Cancer Res ; 27(10): 2723-2733, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33622704

RESUMO

PURPOSE: BAY1436032, an inhibitor of mutant isocitrate dehydrogenase 1 (mIDH1), was active against multiple IDH1-R132X solid tumors in preclinical models. This first-in-human study was designed to determine the safety and pharmacokinetics of BAY1436032, and to evaluate its potential pharmacodynamics and antitumor effects. PATIENTS AND METHODS: The study comprised of dose escalation and dose expansion cohorts. BAY1436032 tablets were orally administered twice daily on a continuous basis in subjects with mIDH1 solid tumors. RESULTS: In dose escalation, 29 subjects with various tumor types were administered BAY1436032 across five doses (150-1,500 mg twice daily). BAY1432032 exhibited a relatively short half-life. Most evaluable subjects experienced target inhibition as indicated by a median maximal reduction of plasma R-2-hydroxyglutarate levels of 76%. BAY1436032 was well tolerated and an MTD was not identified. A dose of 1,500 mg twice daily was selected for dose expansion, where 52 subjects were treated in cohorts representing four different tumor types [lower grade glioma (LGG), glioblastoma, intrahepatic cholangiocarcinoma, and a basket cohort of other tumor types]. The best clinical outcomes were in subjects with LGG (n = 35), with an objective response rate of 11% (one complete response and three partial responses) and stable disease in 43%. As of August 2020, four of these subjects were in treatment for >2 years and still ongoing. Objective responses were observed only in LGG. CONCLUSIONS: BAY1436032 was well tolerated and showed evidence of target inhibition and durable objective responses in a small subset of subjects with LGG.


Assuntos
Compostos de Anilina/uso terapêutico , Antineoplásicos/uso terapêutico , Benzimidazóis/uso terapêutico , Isocitrato Desidrogenase/antagonistas & inibidores , Isocitrato Desidrogenase/genética , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Compostos de Anilina/administração & dosagem , Compostos de Anilina/efeitos adversos , Compostos de Anilina/farmacocinética , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Benzimidazóis/administração & dosagem , Benzimidazóis/efeitos adversos , Benzimidazóis/farmacocinética , Biomarcadores Tumorais , Análise Mutacional de DNA , Gerenciamento Clínico , Suscetibilidade a Doenças , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias/diagnóstico , Neoplasias/mortalidade
3.
Cancers (Basel) ; 12(10)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007926

RESUMO

Chimeric antigen receptor (CAR) T cell (CART) therapy has been established as a treatment option for patients with CD19-positive lymphoid malignancies in both the refractory and the relapsed setting. Displaying significant responses in clinical trials, two second-generation CART products directed against CD19, axicabtagene ciloleucel (axi-cel) and tisagenlecleucel (tisa-cel), have been approved and integrated into the clinical routine. However, experimental assay for quantitative monitoring of both of these CART products in treated patients in the open domain are lacking. To address this issue, we established and validated a quantitative single copy gene (SCG)-based duplex (DP)-PCR assay (SCG-DP-PCR) to quantify CARTs based on the FMC63 single chain variable fragment (scFv), i.e., axi-cel and tisa-cel. This quantitative PCR (qPCR) approach operates without standard curves or calibrator samples, offers a tool to assess cellular kinetics of FMC63 CARTs and allows direct comparison of CART-copies in axi-cel versus tisa-cel patient samples. For treating physicians, SCG-DP-PCR is an important tool to monitor CARTs and guide clinical decisions regarding CART effects in respective patients.

4.
Lancet Oncol ; 20(5): 728-740, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30952559

RESUMO

BACKGROUND: The Response Assessment in Neuro-Oncology (RANO) criteria and requirements for a uniform protocol have been introduced to standardise assessment of MRI scans in both clinical trials and clinical practice. However, these criteria mainly rely on manual two-dimensional measurements of contrast-enhancing (CE) target lesions and thus restrict both reliability and accurate assessment of tumour burden and treatment response. We aimed to develop a framework relying on artificial neural networks (ANNs) for fully automated quantitative analysis of MRI in neuro-oncology to overcome the inherent limitations of manual assessment of tumour burden. METHODS: In this retrospective study, we compiled a single-institution dataset of MRI data from patients with brain tumours being treated at Heidelberg University Hospital (Heidelberg, Germany; Heidelberg training dataset) to develop and train an ANN for automated identification and volumetric segmentation of CE tumours and non-enhancing T2-signal abnormalities (NEs) on MRI. Independent testing and large-scale application of the ANN for tumour segmentation was done in a single-institution longitudinal testing dataset from the Heidelberg University Hospital and in a multi-institutional longitudinal testing dataset from the prospective randomised phase 2 and 3 European Organisation for Research and Treatment of Cancer (EORTC)-26101 trial (NCT01290939), acquired at 38 institutions across Europe. In both longitudinal datasets, spatial and temporal tumour volume dynamics were automatically quantified to calculate time to progression, which was compared with time to progression determined by RANO, both in terms of reliability and as a surrogate endpoint for predicting overall survival. We integrated this approach for fully automated quantitative analysis of MRI in neuro-oncology within an application-ready software infrastructure and applied it in a simulated clinical environment of patients with brain tumours from the Heidelberg University Hospital (Heidelberg simulation dataset). FINDINGS: For training of the ANN, MRI data were collected from 455 patients with brain tumours (one MRI per patient) being treated at Heidelberg hospital between July 29, 2009, and March 17, 2017 (Heidelberg training dataset). For independent testing of the ANN, an independent longitudinal dataset of 40 patients, with data from 239 MRI scans, was collected at Heidelberg University Hospital in parallel with the training dataset (Heidelberg test dataset), and 2034 MRI scans from 532 patients at 34 institutions collected between Oct 26, 2011, and Dec 3, 2015, in the EORTC-26101 study were of sufficient quality to be included in the EORTC-26101 test dataset. The ANN yielded excellent performance for accurate detection and segmentation of CE tumours and NE volumes in both longitudinal test datasets (median DICE coefficient for CE tumours 0·89 [95% CI 0·86-0·90], and for NEs 0·93 [0·92-0·94] in the Heidelberg test dataset; CE tumours 0·91 [0·90-0·92], NEs 0·93 [0·93-0·94] in the EORTC-26101 test dataset). Time to progression from quantitative ANN-based assessment of tumour response was a significantly better surrogate endpoint than central RANO assessment for predicting overall survival in the EORTC-26101 test dataset (hazard ratios ANN 2·59 [95% CI 1·86-3·60] vs central RANO 2·07 [1·46-2·92]; p<0·0001) and also yielded a 36% margin over RANO (p<0·0001) when comparing reliability values (ie, agreement in the quantitative volumetrically defined time to progression [based on radiologist ground truth vs automated assessment with ANN] of 87% [266 of 306 with sufficient data] compared with 51% [155 of 306] with local vs independent central RANO assessment). In the Heidelberg simulation dataset, which comprised 466 patients with brain tumours, with 595 MRI scans obtained between April 27, and Sept 17, 2018, automated on-demand processing of MRI scans and quantitative tumour response assessment within the simulated clinical environment required 10 min of computation time (average per scan). INTERPRETATION: Overall, we found that ANN enabled objective and automated assessment of tumour response in neuro-oncology at high throughput and could ultimately serve as a blueprint for the application of ANN in radiology to improve clinical decision making. Future research should focus on prospective validation within clinical trials and application for automated high-throughput imaging biomarker discovery and extension to other diseases. FUNDING: Medical Faculty Heidelberg Postdoc-Program, Else Kröner-Fresenius Foundation.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Diagnóstico por Computador , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Automação , Neoplasias Encefálicas/patologia , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase III como Assunto , Bases de Dados Factuais , Progressão da Doença , Feminino , Alemanha , Humanos , Masculino , Estudos Multicêntricos como Assunto , Valor Preditivo dos Testes , Ensaios Clínicos Controlados Aleatórios como Assunto , Reprodutibilidade dos Testes , Estudos Retrospectivos , Fatores de Tempo , Resultado do Tratamento , Carga Tumoral , Fluxo de Trabalho
5.
J Cereb Blood Flow Metab ; 37(2): 485-494, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26861817

RESUMO

Antiantiogenic therapy with bevacizumab in recurrent glioblastoma is currently understood to both reduce microvascular density and to prune abnormal tumor microvessels. Microvascular pruning and the resulting vascular normalization are hypothesized to reduce tumor hypoxia and increase supply of systemic therapy to the tumor; however, the underlying pathophysiological changes and their timing after treatment initiation remain controversial. Here, we use a novel dynamic susceptibility contrast MRI-based method, which allows simultaneous assessment of tumor net oxygenation changes reflected by the tumor metabolic rate of oxygen and vascular normalization represented by the capillary transit time heterogeneity. We find that capillary transit time heterogeneity, and hence the oxygen extraction fraction combine with the tumoral blood flow (cerebral blood flow) in such a way that the overall tumor oxygenation appears to be worsened despite vascular normalization. Accordingly, hazards for both progression and death are found elevated in patients with a greater reduction of tumor metabolic rate of oxygen in response to bevacizumab and patients with higher intratumoral tumor metabolic rate of oxygen at baseline. This implies that tumors with a higher degree of angiogenesis prior to bevacizumab-treatment retain a higher level of angiogenesis during therapy despite a greater antiangiogenic effect of bevacizumab, hinting at evasive mechanisms limiting bevacizumab efficacy in that a reversal of their biological behavior and relative prognosis does not occur.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Bevacizumab/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Oxigênio/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/metabolismo , Circulação Cerebrovascular/efeitos dos fármacos , Glioblastoma/complicações , Glioblastoma/metabolismo , Humanos , Hipóxia/complicações , Hipóxia/metabolismo , Imageamento por Ressonância Magnética/métodos , Recidiva Local de Neoplasia/complicações , Recidiva Local de Neoplasia/metabolismo , Neovascularização Patológica/complicações , Neovascularização Patológica/metabolismo , Oxigênio/análise , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA