Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(8): 3690-3701, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38350027

RESUMO

This study investigated the presence and human hazards associated with pesticides and other anthropogenic chemicals identified in kale grown in urban and rural environments. Pesticides and related compounds (i.e., surfactants and metabolites) in kale samples were evaluated using a nontargeted data acquisition for targeted analysis method which utilized a pesticide mixture containing >1,000 compounds for suspect screening and quantification. We modeled population-level exposures and assessed noncancer hazards to DEET, piperonyl butoxide, prometon, secbumeton, terbumeton, and spinosyn A using nationally representative estimates of kale consumption across life stages in the US. Our findings indicate even sensitive populations (e.g., pregnant women and children) are not likely to experience hazards from these select compounds were they to consume kale from this study. However, a strictly nontargeted chemical analytical approach identified a total of 1,822 features across all samples, and principal component analysis revealed that the kale chemical composition may have been impacted by agricultural growing practices and environmental factors. Confidence level 2 compounds that were ≥5 times more abundant in the urban samples than in rural samples (p < 0.05) included chemicals categorized as "flavoring and nutrients" and "surfactants" in the EPA's Chemicals and Products Database. Using the US-EPA's Cheminformatics Hazard Module, we identified that many of the nontarget compounds have predicted toxicity scores of "very high" for several end points related to human health. These aspects would have been overlooked using traditional targeted analysis methods, although more information is needed to ascertain whether the compounds identified through nontargeted analysis are of environmental or human health concern. As such, our approach enabled the identification of potentially hazardous compounds that, based on their hazard assessment score, merit follow-up investigations.


Assuntos
Brassica , Praguicidas , Gravidez , Criança , Feminino , Humanos , Fazendas , Medição de Risco , Praguicidas/análise
2.
Environ Int ; 178: 108097, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37478680

RESUMO

Exposure science is evolving from its traditional "after the fact" and "one chemical at a time" approach to forecasting chemical exposures rapidly enough to keep pace with the constantly expanding landscape of chemicals and exposures. In this article, we provide an overview of the approaches, accomplishments, and plans for advancing computational exposure science within the U.S. Environmental Protection Agency's Office of Research and Development (EPA/ORD). First, to characterize the universe of chemicals in commerce and the environment, a carefully curated, web-accessible chemical resource has been created. This DSSTox database unambiguously identifies >1.2 million unique substances reflecting potential environmental and human exposures and includes computationally accessible links to each compound's corresponding data resources. Next, EPA is developing, applying, and evaluating predictive exposure models. These models increasingly rely on data, computational tools like quantitative structure activity relationship (QSAR) models, and machine learning/artificial intelligence to provide timely and efficient prediction of chemical exposure (and associated uncertainty) for thousands of chemicals at a time. Integral to this modeling effort, EPA is developing data resources across the exposure continuum that includes application of high-resolution mass spectrometry (HRMS) non-targeted analysis (NTA) methods providing measurement capability at scale with the number of chemicals in commerce. These research efforts are integrated and well-tailored to support population exposure assessment to prioritize chemicals for exposure as a critical input to risk management. In addition, the exposure forecasts will allow a wide variety of stakeholders to explore sustainable initiatives like green chemistry to achieve economic, social, and environmental prosperity and protection of future generations.


Assuntos
Poluentes Ambientais , Estados Unidos , Humanos , Poluentes Ambientais/análise , United States Environmental Protection Agency , Inteligência Artificial , Gestão de Riscos , Incerteza , Exposição Ambiental/análise , Medição de Risco
4.
Chem Res Toxicol ; 36(3): 465-478, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36877669

RESUMO

The need for careful assembly, training, and validation of quantitative structure-activity/property models (QSAR/QSPR) is more significant than ever as data sets become larger and sophisticated machine learning tools become increasingly ubiquitous and accessible to the scientific community. Regulatory agencies such as the United States Environmental Protection Agency must carefully scrutinize each aspect of a resulting QSAR/QSPR model to determine its potential use in environmental exposure and hazard assessment. Herein, we revisit the goals of the Organisation for Economic Cooperation and Development (OECD) in our application and discuss the validation principles for structure-activity models. We apply these principles to a model for predicting water solubility of organic compounds derived using random forest regression, a common machine learning approach in the QSA/PR literature. Using public sources, we carefully assembled and curated a data set consisting of 10,200 unique chemical structures with associated water solubility measurements. This data set was then used as a focal narrative to methodically consider the OECD's QSA/PR principles and how they can be applied to random forests. Despite some expert, mechanistically informed supervision of descriptor selection to enhance model interpretability, we achieved a model of water solubility with comparable performance to previously published models (5-fold cross validated performance 0.81 R2 and 0.98 RMSE). We hope this work will catalyze a necessary conversation around the importance of cautiously modernizing and explicitly leveraging OECD principles while pursuing state-of-the-art machine learning approaches to derive QSA/PR models suitable for regulatory consideration.


Assuntos
Organização para a Cooperação e Desenvolvimento Econômico , Relação Quantitativa Estrutura-Atividade , Solubilidade , Algoritmos , Água/química
5.
Curr Opin Environ Sci Health ; 31: 1-8, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36741274

RESUMO

New Approach Methodologies (NAMs) provide tools for supporting both human and environmental risk assessment (HRA and ERA). This short review provides recent insights regarding the use of NAMs in ERA of food and feed chemicals. We highlight the usefulness of tiered methods supporting weight-of-evidence approaches in relation to problem formulation (i.e., data availability, time, and resource availability). In silico models, including quantitative structure activity relationship models, support filling data gaps when no chemical property or ecotoxicological data are available, and biologically-based models (e.g., toxicokinetic-toxicodynamic models, dynamic energy models, physiologically-based models and species sensitivity distributions) are applicable in more data rich situations, including landscape-based modelling approaches. Particular attention is given to provide practical examples to apply the approaches described in real-world settings. We conclude with future perspectives, with regards to the need for addressing complex challenges such as chemical mixtures and multiple stressors in a wide range of organisms and ecosystems.

6.
Environ Int ; 169: 107468, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36174483

RESUMO

BACKGROUND: Systematic evidence maps (SEMs) are gaining visibility in environmental health for their utility to serve as problem formulation tools and assist in decision-making, especially for priority setting. SEMs are now routinely prepared as part of the assessment development process for the US Environmental Protection Agency (EPA) Integrated Risk Information System (IRIS) and Provisional Peer Reviewed Toxicity Value (PPRTV) assessments. SEMs can also be prepared to explore the available literature for an individual chemical or groups of chemicals of emerging interest. OBJECTIVES: This document describes the typical methods used to produce SEMs for the IRIS and PPRTV Programs, as well as "fit for purpose" applications using a variety of examples drawn from existing analyses. It is intended to serve as an example base template that can be adapted as needed for the specific SEM. The presented methods include workflows intended to facilitate rapid production. The Populations, Exposures, Comparators and Outcomes (PECO) criteria are typically kept broad to identify mammalian animal bioassay and epidemiological studies that could be informative for human hazard identification. In addition, a variety of supplemental content is tracked, e.g., studies presenting information on in vitro model systems, non-mammalian model systems, exposure-level-only studies in humans, pharmacokinetic models, and absorption, distribution, metabolism, and excretion (ADME). The availability of New Approach Methods (NAMs) evidence is also tracked (e.g., high throughput, transcriptomic, in silico, etc.). Genotoxicity studies may be considered as PECO relevant or supplemental material, depending on the topic and context of the review. Standard systematic review practices (e.g., two independent reviewers per record) and specialized software applications are used to search and screen the literature and may include the use of machine learning software. Mammalian bioassay and epidemiological studies that meet the PECO criteria after full-text review are briefly summarized using structured web-based extraction forms with respect to study design and health system(s) assessed. Extracted data is available in interactive visual formats and can be downloaded in open access formats. Methods for conducting study evaluation are also presented which is conducted on a case-by-case basis, depending on the usage of the SEM.


Assuntos
Saúde Ambiental , Projetos de Pesquisa , Animais , Estudos Epidemiológicos , Humanos , Sistemas de Informação , Mamíferos , Estados Unidos , United States Environmental Protection Agency
7.
Sci Total Environ ; 830: 154795, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35341855

RESUMO

Amphibian populations are undergoing a global decline worldwide. Such decline has been attributed to their unique physiology, ecology, and exposure to multiple stressors including chemicals, temperature, and biological hazards such as fungi of the Batrachochytrium genus, viruses such as Ranavirus, and habitat reduction. There are limited toxicity data for chemicals available for amphibians and few quantitative structure-activity relationship (QSAR) models have been developed and are publicly available. Such QSARs provide important tools to assess the toxicity of chemicals particularly in a data poor context. QSARs provide important tools to assess the toxicity of chemicals particularly when no toxicological data are available. This manuscript provides a description and validation of a regression-based QSAR model to predict, in a quantitative manner, acute lethal toxicity of aromatic chemicals in tadpoles of the Japanese brown frog (Rana japonica). QSAR models for acute median lethal molar concentrations (LC50-12 h) of waterborne chemicals using the Monte Carlo method were developed. The statistical characteristics of the QSARs were described as average values obtained from five random distributions into training and validation sets. Predictions from the model gave satisfactory results for the overall training set (R2 = 0.72 and RMSE = 0.33) and were even more robust for the validation set (R2 = 0.96 and RMSE = 0.11). Further development of QSAR models in amphibians, particularly for other life stages and species, are discussed.


Assuntos
Relação Quantitativa Estrutura-Atividade , Ranidae , Animais , Calibragem , Larva , Medição de Risco
8.
Methods Mol Biol ; 2425: 589-636, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35188648

RESUMO

This chapter aims to introduce the reader to the basic principles of environmental risk assessment of chemicals and highlights the usefulness of tiered approaches within weight of evidence approaches in relation to problem formulation i.e., data availability, time and resource availability. In silico models are then introduced and include quantitative structure-activity relationship (QSAR) models, which support filling data gaps when no chemical property or ecotoxicological data are available. In addition, biologically-based models can be applied in more data rich situations and these include generic or species-specific models such as toxicokinetic-toxicodynamic models, dynamic energy budget models, physiologically based models, and models for ecosystem hazard assessment i.e. species sensitivity distributions and ultimately for landscape assessment i.e. landscape-based modeling approaches. Throughout this chapter, particular attention is given to provide practical examples supporting the application of such in silico models in real-world settings. Future perspectives are discussed to address environmental risk assessment in a more holistic manner particularly for relevant complex questions, such as the risk assessment of multiple stressors and the development of harmonized approaches to ultimately quantify the relative contribution and impact of single chemicals, multiple chemicals and multiple stressors on living organisms.


Assuntos
Ecossistema , Ecotoxicologia , Simulação por Computador , Relação Quantitativa Estrutura-Atividade , Medição de Risco
9.
Regul Toxicol Pharmacol ; 125: 105020, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34333066

RESUMO

Omics methodologies are widely used in toxicological research to understand modes and mechanisms of toxicity. Increasingly, these methodologies are being applied to questions of regulatory interest such as molecular point-of-departure derivation and chemical grouping/read-across. Despite its value, widespread regulatory acceptance of omics data has not yet occurred. Barriers to the routine application of omics data in regulatory decision making have been: 1) lack of transparency for data processing methods used to convert raw data into an interpretable list of observations; and 2) lack of standardization in reporting to ensure that omics data, associated metadata and the methodologies used to generate results are available for review by stakeholders, including regulators. Thus, in 2017, the Organisation for Economic Co-operation and Development (OECD) Extended Advisory Group on Molecular Screening and Toxicogenomics (EAGMST) launched a project to develop guidance for the reporting of omics data aimed at fostering further regulatory use. Here, we report on the ongoing development of the first formal reporting framework describing the processing and analysis of both transcriptomic and metabolomic data for regulatory toxicology. We introduce the modular structure, content, harmonization and strategy for trialling this reporting framework prior to its publication by the OECD.


Assuntos
Metabolômica/normas , Organização para a Cooperação e Desenvolvimento Econômico/normas , Toxicogenética/normas , Toxicologia/normas , Transcriptoma/fisiologia , Documentação/normas , Humanos
10.
Environ Int ; 154: 106566, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33934018

RESUMO

For the past six decades, human health risk assessment of chemicals has relied on in vivo data from human epidemiological and experimental animal toxicological studies to inform the derivation of non-cancer toxicity values. The ongoing evolution of this risk assessment paradigm in an environmental landscape of data-poor chemicals has highlighted the need to develop and implement non-testing methods, so-called New Approach Methodologies (NAMs). NAMs include a growing number of in silico and in vitro data streams designed to inform hazard properties of chemicals, including kinetics and dynamics at different levels of biological organization, environmental fate and transport, and exposure. NAMs provide a fit-for-purpose science-basis for human hazard and risk characterization of chemicals ranging from data-gap filling applications to broad evidence-based decision-making. Systematic assembly and delivery of empirical and predicted data for chemicals are paramount to advancing chemical evaluation, and software tools serve an essential role in delivering these data to the scientific community. The CompTox Chemicals Dashboard (from here on referred to as the "Dashboard") is one such tool and is a publicly available web-based application developed by the US Environmental Protection Agency to provide access to chemistry, toxicity and exposure information for ~900,000 chemicals. The Dashboard is increasingly becoming a valuable resource for assessors tasked with the evaluation of potential human health risks associated with chemical exposures. In this context, the significant amount of information present in the Dashboard facilitates: 1) assembly of information on physicochemical properties and environmental fate and transport and exposure parameters and metrics; 2) identification of cancer and non-cancer health effects from extant human and experimental animal studies in the public domain and/or information not available in the public domain (i.e., "grey literature"); 3) systematic literature searching and review for developing cancer and non-cancer hazard evidence bases; and 4) access to mechanistic information that can aid or augment the analysis of traditional toxicology evidence bases, or potentially, serve as the primary basis for informing hazard identification and dose-response when traditional bioassay data are lacking. Finally, in silico predictive tools developed to conduct structure-activity or read-across analyses are also available within the Dashboard. This practical tutorial is intended to address key questions from the human health risk assessment community dealing with chemicals in both food and in the environment. Perspectives for future development or refinement of the Dashboard highlight foreseen activities to further support the research and risk assessment community in cancer and non-cancer chemical evaluations.


Assuntos
United States Environmental Protection Agency , Animais , Simulação por Computador , Humanos , Medição de Risco , Estados Unidos
11.
Risk Anal ; 40(1): 83-96, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-29750840

RESUMO

The volume and variety of manufactured chemicals is increasing, although little is known about the risks associated with the frequency and extent of human exposure to most chemicals. The EPA and the recent signing of the Lautenberg Act have both signaled the need for high-throughput methods to characterize and screen chemicals based on exposure potential, such that more comprehensive toxicity research can be informed. Prior work of Mitchell et al. using multicriteria decision analysis tools to prioritize chemicals for further research is enhanced here, resulting in a high-level chemical prioritization tool for risk-based screening. Reliable exposure information is a key gap in currently available engineering analytics to support predictive environmental and health risk assessments. An elicitation with 32 experts informed relative prioritization of risks from chemical properties and human use factors, and the values for each chemical associated with each metric were approximated with data from EPA's CP_CAT database. Three different versions of the model were evaluated using distinct weight profiles, resulting in three different ranked chemical prioritizations with only a small degree of variation across weight profiles. Future work will aim to include greater input from human factors experts and better define qualitative metrics.

12.
Drug Discov Today ; 18(1-2): 58-70, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23159359

RESUMO

There is an expanding amount of interest directed at the repurposing and repositioning of drugs, as well as how in silico methods can assist these endeavors. Recent repurposing project tendering calls by the National Center for Advancing Translational Sciences (USA) and the Medical Research Council (UK) have included compound information and pharmacological data. However, none of the internal company development code names were assigned to chemical structures in the official documentation. This not only abrogates in silico analysis to support repurposing but consequently necessitates data gathering and curation to assign structures. Here, we describe the approaches, results and major challenges associated with this.


Assuntos
Desenho de Fármacos , Indústria Farmacêutica/métodos , Reposicionamento de Medicamentos , Simulação por Computador , Humanos , Pesquisa Translacional Biomédica/métodos , Reino Unido , Estados Unidos
13.
Drug Discov Today ; 17(21-22): 1188-98, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22683805

RESUMO

Open PHACTS is a public-private partnership between academia, publishers, small and medium sized enterprises and pharmaceutical companies. The goal of the project is to deliver and sustain an 'open pharmacological space' using and enhancing state-of-the-art semantic web standards and technologies. It is focused on practical and robust applications to solve specific questions in drug discovery research. OPS is intended to facilitate improvements in drug discovery in academia and industry and to support open innovation and in-house non-public drug discovery research. This paper lays out the challenges and how the Open PHACTS project is hoping to address these challenges technically and socially.


Assuntos
Descoberta de Drogas/organização & administração , Indústria Farmacêutica/organização & administração , Parcerias Público-Privadas/organização & administração , Desenho de Fármacos , Humanos , Armazenamento e Recuperação da Informação/métodos , Internet , Inovação Organizacional , Pesquisa/organização & administração , Semântica
14.
Pharm Res ; 28(8): 1785-91, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21607776

RESUMO

From research published in the last six years we have identified 34 studies that have screened libraries of FDA-approved drugs against various whole cell or target assays. These studies have each identified one or more compounds with a suggested new bioactivity that had not been described previously. We now show that 13 of these drugs were active against more than one additional disease, thereby suggesting a degree of promiscuity. We also show that following compilation of all the studies, 109 molecules were identified by screening in vitro. These molecules appear to be statistically more hydrophobic with a higher molecular weight and AlogP than orphan-designated products with at least one marketing approval for a common disease indication or one marketing approval for a rare disease from the FDA's rare disease research database. Capturing these in vitro data on old drugs for new uses will be important for potential reuse and analysis by others to repurpose or reposition these or other existing drugs. We have created databases which can be searched by the public and envisage that these can be updated as more studies are published.


Assuntos
Descoberta de Drogas , Reposicionamento de Medicamentos , Preparações Farmacêuticas , Bases de Dados Factuais , Indústria Farmacêutica , Pesquisa , Estados Unidos , United States Food and Drug Administration
15.
Drug Discov Today ; 16(7-8): 298-310, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21376136

RESUMO

One approach to speed up drug discovery is to examine new uses for existing approved drugs, so-called 'drug repositioning' or 'drug repurposing', which has become increasingly popular in recent years. Analysis of the literature reveals many examples of US Food and Drug Administration-approved drugs that are active against multiple targets (also termed promiscuity) that can also be used to therapeutic advantage for repositioning for other neglected and rare diseases. Using proof-of-principle examples, we suggest here that with current in silico technologies and databases of the structures and biological activities of chemical compounds (drugs) and related data, as well as close integration with in vitro screening data, improved opportunities for drug repurposing will emerge for neglected or rare/orphan diseases.


Assuntos
Reposicionamento de Medicamentos , Doenças Negligenciadas/tratamento farmacológico , Produção de Droga sem Interesse Comercial/métodos , Doenças Raras , Bases de Dados Factuais , Desenho de Fármacos , Descoberta de Drogas , Indústria Farmacêutica , Ensaios de Triagem em Larga Escala , Humanos
16.
Drug Discov Today ; 15(19-20): 812-5, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20732447

RESUMO

The recent announcement that GlaxoSmithKline have released a huge tranche of whole-cell malaria screening data to the public domain, accompanied by a corresponding publication, raises some issues for consideration before this exemplar instance becomes a trend. We have examined the data from a high level, by studying the molecular properties, and consider the various alerts presently in use by major pharma companies. We not only acknowledge the potential value of such data but also raise the issue of the actual value of such datasets released into the public domain. We also suggest approaches that could enhance the value of such datasets to the community and theoretically offer an immediate benefit to the search for leads for other neglected diseases.


Assuntos
Antimaláricos/farmacologia , Bases de Dados Factuais , Avaliação Pré-Clínica de Medicamentos , Indústria Farmacêutica , Pesquisa Biomédica , Humanos , Malária/tratamento farmacológico , Doenças Negligenciadas
17.
Lab Chip ; 10(1): 13-22, 2010 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20024044

RESUMO

Web-based technologies coupled with a drive for improved communication between scientists have resulted in the proliferation of scientific opinion, data and knowledge at an ever-increasing rate. The increasing array of chemistry-related computer-based resources now available provides chemists with a direct path to the discovery of information, once previously accessed via library services and limited to commercial and costly resources. We propose that preclinical absorption, distribution, metabolism, excretion and toxicity data as well as pharmacokinetic properties from studies published in the literature (which use animal or human tissues in vitro or from in vivo studies) are precompetitive in nature and should be freely available on the web. This could be made possible by curating the literature and patents, data donations from pharmaceutical companies and by expanding the currently freely available ChemSpider database of over 21 million molecules with physicochemical properties. This will require linkage to PubMed, PubChem and Wikipedia as well as other frequently used public databases that are currently used, mining the full text publications to extract the pertinent experimental data. These data will need to be extracted using automated and manual methods, cleaned and then published to the ChemSpider or other database such that it will be freely available to the biomedical research and clinical communities. The value of the data being accessible will improve development of drug molecules with good ADME/Tox properties, facilitate computational model building for these properties and enable researchers to not repeat the failures of past drug discovery studies.


Assuntos
Pesquisa Biomédica/métodos , Simulação por Computador , Bases de Dados Factuais , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Comunicação Interdisciplinar , Animais , Pesquisa Biomédica/economia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Competição Econômica , Humanos , Modelos Biológicos , Preparações Farmacêuticas/química , Farmacocinética , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA