Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Genes Brain Behav ; 20(8): e12767, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34427038

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) a common neurodevelopmental disorder of childhood and often comorbid with other externalizing disorders (EDs). There is evidence that externalizing behaviors share a common genetic etiology. Recently, a genome-wide, multigenerational sample linked variants in the Lphn3 gene to ADHD and other externalizing behaviors. Likewise, limited research in animal models has provided converging evidence that Lphn3 plays a role in EDs. This study examined the impact of Lphn3 deletion (i.e., Lphn3-/- ) in rats on measures of behavioral control associated with externalizing behavior. Impulsivity was assessed for 30 days via a differential reinforcement of low rates (DRL) task and working memory evaluated for 25 days using a delayed spatial alternation (DSA) task. Data from both tasks were averaged into 5-day testing blocks. We analyzed overall performance, as well as response patterns in just the first and last blocks to assess acquisition and steady-state performance, respectively. "Positive control" measures on the same tasks were measured in an accepted animal model of ADHD-the spontaneously hypertensive rat (SHR). Compared with wildtype controls, Lphn3-/- rats exhibited deficits on both the DRL and DSA tasks, indicative of deficits in impulsive action and working memory, respectively. These deficits were less severe than those in the SHRs, who were profoundly impaired on both tasks compared with their control strain, Wistar-Kyoto rats. The results provide evidence supporting a role for Lphn3 in modulating inhibitory control and working memory, and suggest additional research evaluating the role of Lphn3 in the manifestation of EDs more broadly is warranted.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Modelos Animais de Doenças , Função Executiva , Animais , Feminino , Masculino , Ratos , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Deleção de Genes , Ratos Endogâmicos SHR , Ratos Sprague-Dawley , Comportamento Espacial
2.
Front Toxicol ; 3: 629229, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295117

RESUMO

There is a spectrum of approaches to neurotoxicological science from high-throughput in vitro cell-based assays, through a variety of experimental animal models to human epidemiological and clinical studies. Each level of analysis has its own advantages and limitations. Experimental animal models give essential information for neurobehavioral toxicology, providing cause-and-effect information regarding risks of neurobehavioral dysfunction caused by toxicant exposure. Human epidemiological and clinical studies give the closest information to characterizing human risk, but without randomized treatment of subjects to different toxicant doses can only give information about association between toxicant exposure and neurobehavioral impairment. In vitro methods give much needed high throughput for many chemicals and mixtures but cannot provide information about toxicant impacts on behavioral function. Crucial to the utility of experimental animal model studies is cross-species translation. This is vital for both risk assessment and mechanistic determination. Interspecies extrapolation is important to characterize from experimental animal models to humans and between different experimental animal models. This article reviews the literature concerning extrapolation of neurobehavioral toxicology from established rat models to humans and from zebrafish a newer experimental model to rats. The functions covered include locomotor activity, emotion, and cognition and the neurotoxicants covered include pesticides, metals, drugs of abuse, flame retardants and polycyclic aromatic hydrocarbons. With more complete understanding of the strengths and limitations of interspecies translation, we can better use animal models to protect humans from neurobehavioral toxicity.

3.
Toxicol Appl Pharmacol ; 354: 176-190, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29544898

RESUMO

High throughput screens for developmental neurotoxicity (DN) will facilitate evaluation of chemicals and can be used to prioritize those designated for follow-up. DN is evaluated under different guidelines. Those for drugs generally include peri- and postnatal studies and juvenile toxicity studies. For pesticides and commercial chemicals, when triggered, include developmental neurotoxicity studies (DNT) and extended one-generation reproductive toxicity studies. Raffaele et al. (2010) reviewed 69 pesticide DNT studies and found two of the four behavioral tests underperformed. There are now many epidemiological studies on children showing adverse neurocognitive effects, yet guideline DN studies fail to assess most of the functions affected in children; nor do DN guidelines reflect the advances in brain structure-function relationships from neuroscience. By reducing the number of test ages, removing underperforming tests and replacing them with tests that assess cognitive abilities relevant to children, the value of DN protocols can be improved. Testing for the brain networks that mediate higher cognitive functions need to include assessments of working memory, attention, long-term memory (explicit, implicit, and emotional), and executive functions such as cognitive flexibility. The current DNT focus on what can be measured should be replaced with what should be measured. With the wealth of data available from human studies and neuroscience, the recommendation is made for changes to make DN studies better focused on human-relevant functions using tests of proven validity that assess comparable functions to tests used in children. Such changes will provide regulatory authorities with more relevant data.


Assuntos
Encéfalo/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Testes de Toxicidade , Toxicologia/métodos , Adolescente , Fatores Etários , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Encéfalo/patologia , Criança , Comportamento Infantil/efeitos dos fármacos , Desenvolvimento Infantil/efeitos dos fármacos , Pré-Escolar , Humanos , Lactente , Modelos Animais , Neurônios/metabolismo , Neurônios/patologia , Testes Neuropsicológicos , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Síndromes Neurotóxicas/fisiopatologia , Medição de Risco , Especificidade da Espécie
4.
Synapse ; 71(11)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28686793

RESUMO

In utero methamphetamine (MA) exposure leads to a range of adverse effects, such as decreased attention, reduced working-memory capability, behavioral dysregulation, and spatial memory impairments in exposed children. In the current experiment, preweaning Sprague-Dawley rats-as a model of third trimester human exposure-were administered the spin trapping agent, N-tert-butyl-α-phenylnitrone (PBN), daily prior to MA. Rats were given 0 (SAL) or 40 mg/kg PBN prior to each MA dose (10 mg/kg, 4× per day) from postnatal day (P) 6-15. Littermates underwent Cincinnati water maze, Morris water maze, and radial water maze assessment beginning on P30 (males) or P60 (females). Males were also tested for conditioned contextual and cued freezing, while females were trained in passive avoidance. Findings show that, regardless of age/sex, neonatal MA induced deficits in all tests, except passive avoidance. PBN did not ameliorate these effects, but had a few minor effects. Taken together, MA induced learning deficits emerge early and persist, but the mechanism remains unknown.


Assuntos
Deficiências da Aprendizagem/induzido quimicamente , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos , Metanfetamina/toxicidade , Efeitos Tardios da Exposição Pré-Natal , Espécies Reativas de Oxigênio/metabolismo , Animais , Animais Recém-Nascidos , Antioxidantes/farmacologia , Óxidos N-Cíclicos/farmacologia , Modelos Animais de Doenças , Feminino , Reação de Congelamento Cataléptica/efeitos dos fármacos , Reação de Congelamento Cataléptica/fisiologia , Aprendizagem/fisiologia , Deficiências da Aprendizagem/metabolismo , Masculino , Memória/fisiologia , Fármacos Neuroprotetores/farmacologia , Gravidez , Distribuição Aleatória , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA