Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genet Epidemiol ; 39(8): 664-77, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26515609

RESUMO

The power of genome-wide association studies (GWAS) for mapping complex traits with single-SNP analysis (where SNP is single-nucleotide polymorphism) may be undermined by modest SNP effect sizes, unobserved causal SNPs, correlation among adjacent SNPs, and SNP-SNP interactions. Alternative approaches for testing the association between a single SNP set and individual phenotypes have been shown to be promising for improving the power of GWAS. We propose a Bayesian latent variable selection (BLVS) method to simultaneously model the joint association mapping between a large number of SNP sets and complex traits. Compared with single SNP set analysis, such joint association mapping not only accounts for the correlation among SNP sets but also is capable of detecting causal SNP sets that are marginally uncorrelated with traits. The spike-and-slab prior assigned to the effects of SNP sets can greatly reduce the dimension of effective SNP sets, while speeding up computation. An efficient Markov chain Monte Carlo algorithm is developed. Simulations demonstrate that BLVS outperforms several competing variable selection methods in some important scenarios.


Assuntos
Frequência do Gene/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único/genética , Característica Quantitativa Herdável , Esquizofrenia/genética , Algoritmos , Teorema de Bayes , Humanos , Desequilíbrio de Ligação/genética , Cadeias de Markov , Modelos Genéticos , Método de Monte Carlo , Fenótipo , Esquizofrenia/epidemiologia , Suécia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA