Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Malar J ; 19(1): 371, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33066799

RESUMO

BACKGROUND: Progress in controlling malaria has stalled in recent years. Today the malaria burden is increasingly concentrated in a few countries, including Burkina Faso, where malaria is not declining. A cohort study was conducted to identify risk factors for malaria infection in children in southwest Burkina Faso, an area with high insecticide-treated net (ITN) coverage and insecticide-resistant vectors. METHODS: Incidence of Plasmodium falciparum infection was measured in 252 children aged 5 to 15 years, using active and passive detection, during the 2017 transmission season, following clearance of infection. Demographic, socio-economic, environmental, and entomological risk factors, including use of ITNs and insecticide resistance were monitored. RESULTS: During the six-month follow-up period, the overall incidence of P. falciparum infection was 2.78 episodes per child (95% CI = 2.66-2.91) by microscopy, and 3.11 (95% CI = 2.95-3.28) by polymerase chain reaction (PCR). The entomological inoculation rate (EIR) was 80.4 infective bites per child over the six-month malaria transmission season. At baseline, 80.6% of children were reported as sleeping under an ITN the previous night, although at the last survey, 23.3% of nets were in poor condition and considered no longer protective. No association was found between the rate of P. falciparum infection and either EIR (incidence rate ratio (IRR): 1.00, 95% CI: 1.00-1.00, p = 0.08) or mortality in WHO tube tests when vectors were exposed to 0.05% deltamethrin (IRR: 1.05, 95% CI: 0.73-1.50, p = 0.79). Travel history (IRR: 1.52, 95% CI: 1.45-1.59, p < 0.001) and higher socio-economic status were associated with an increased risk of P. falciparum infection (IRR: 1.05, 95% CI: 1.00-1.11, p = 0.04). CONCLUSIONS: Incidence of P. falciparum infection remains overwhelmingly high in the study area. The study findings suggest that because of the exceptionally high levels of malaria transmission in the study area, malaria elimination cannot be achieved solely by mass deployment of ITNs and additional control measures are needed.


Assuntos
Anopheles/efeitos dos fármacos , Resistência a Inseticidas , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Malária Falciparum/epidemiologia , Mosquitos Vetores/efeitos dos fármacos , Plasmodium falciparum/fisiologia , Fatores Socioeconômicos , Adolescente , Animais , Burkina Faso/epidemiologia , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Malária Falciparum/parasitologia , Fatores de Risco
2.
PLoS Comput Biol ; 16(4): e1007446, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32320389

RESUMO

Mosquitoes are important vectors for pathogens that infect humans and other vertebrate animals. Some aspects of adult mosquito behavior and mosquito ecology play an important role in determining the capacity of vector populations to transmit pathogens. Here, we re-examine factors affecting the transmission of pathogens by mosquitoes using a new approach. Unlike most previous models, this framework considers the behavioral states and state transitions of adult mosquitoes through a sequence of activity bouts. We developed a new framework for individual-based simulation models called MBITES (Mosquito Bout-based and Individual-based Transmission Ecology Simulator). In MBITES, it is possible to build models that simulate the behavior and ecology of adult mosquitoes in exquisite detail on complex resource landscapes generated by spatial point processes. We also developed an ordinary differential equation model which is the Kolmogorov forward equations for models developed in MBITES under a specific set of simplifying assumptions. While mosquito infection and pathogen development are one possible part of a mosquito's state, that is not our main focus. Using extensive simulation using some models developed in MBITES, we show that vectorial capacity can be understood as an emergent property of simple behavioral algorithms interacting with complex resource landscapes, and that relative density or sparsity of resources and the need to search can have profound consequences for mosquito populations' capacity to transmit pathogens.


Assuntos
Comportamento Animal , Culicidae/fisiologia , Malária/transmissão , Mosquitos Vetores , Algoritmos , Animais , Biologia Computacional , Simulação por Computador , Vetores de Doenças , Ecologia , Ecossistema , Comportamento Alimentar , Feminino , Humanos , Masculino , Modelos Teóricos , Método de Monte Carlo , Oviposição , Probabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA