Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Lancet Infect Dis ; 24(5): 465-475, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38342107

RESUMO

BACKGROUND: The R21/Matrix-M vaccine has demonstrated high efficacy against Plasmodium falciparum clinical malaria in children in sub-Saharan Africa. Using trial data, we aimed to estimate the public health impact and cost-effectiveness of vaccine introduction across sub-Saharan Africa. METHODS: We fitted a semi-mechanistic model of the relationship between anti-circumsporozoite protein antibody titres and vaccine efficacy to data from 3 years of follow-up in the phase 2b trial of R21/Matrix-M in Nanoro, Burkina Faso. We validated the model by comparing predicted vaccine efficacy to that observed over 12-18 months in the phase 3 trial. Integrating this framework within a mathematical transmission model, we estimated the cases, malaria deaths, and disability-adjusted life-years (DALYs) averted and cost-effectiveness over a 15-year time horizon across a range of transmission settings in sub-Saharan Africa. Cost-effectiveness was estimated incorporating the cost of vaccine introduction (dose, consumables, and delivery) relative to existing interventions at baseline. We report estimates at a median of 20% parasite prevalence in children aged 2-10 years (PfPR2-10) and ranges from 3% to 65% PfPR2-10. FINDINGS: Anti-circumsporozoite protein antibody titres were found to satisfy the criteria for a surrogate of protection for vaccine efficacy against clinical malaria. Age-based implementation of a four-dose regimen of R21/Matrix-M vaccine was estimated to avert 181 825 (range 38 815-333 491) clinical cases per 100 000 fully vaccinated children in perennial settings and 202 017 (29 868-405 702) clinical cases per 100 000 fully vaccinated children in seasonal settings. Similar estimates were obtained for seasonal or hybrid implementation. Under an assumed vaccine dose price of US$3, the incremental cost per clinical case averted was $7 (range 4-48) in perennial settings and $6 (3-63) in seasonal settings and the incremental cost per DALY averted was $34 (29-139) in perennial settings and $30 (22-172) in seasonal settings, with lower cost-effectiveness ratios in settings with higher PfPR2-10. INTERPRETATION: Introduction of the R21/Matrix-M malaria vaccine could have a substantial public health benefit across sub-Saharan Africa. FUNDING: The Wellcome Trust, the Bill & Melinda Gates Foundation, the UK Medical Research Council, the European and Developing Countries Clinical Trials Partnership 2 and 3, the NIHR Oxford Biomedical Research Centre, and the Serum Institute of India, Open Philanthropy.


Assuntos
Análise Custo-Benefício , Vacinas Antimaláricas , Malária Falciparum , Modelos Teóricos , Saúde Pública , Humanos , Vacinas Antimaláricas/economia , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/prevenção & controle , Malária Falciparum/epidemiologia , Malária Falciparum/economia , Burkina Faso/epidemiologia , Pré-Escolar , Saúde Pública/economia , Plasmodium falciparum/imunologia , Criança , Proteínas de Protozoários/imunologia , Anticorpos Antiprotozoários/sangue , Eficácia de Vacinas , Lactente , Masculino , Feminino
2.
Vaccine ; 41(28): 4129-4137, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37263873

RESUMO

BACKGROUND: Increasing vaccine hesitancy and refusal poses a challenge to public health as even small reductions in vaccine uptake can result in large outbreaks of infectious diseases. Here we estimate the societal costs of vaccine refusal using measles as a case study. METHODS: We developed a compartmental metapopulation model of measles transmission to explore how the changes in the size and level of social mixing between populations that are "pro-vaccination", and "anti-vaccination" impacts the burden of measles. Using the projected cases and deaths, we calculated the health, healthcare, direct medical costs, and productivity loss associated with vaccine refusal. Using measles in England as a case study, we quantified the societal costs that each vaccine refusal imposes on society. FINDINGS: When there is a high level of mixing between the pro- and anti-vaccination populations, those that refuse to be vaccinated benefit from the herd immunity afforded by the pro-vaccination population. At the same time, their refusal to be vaccinated increases the burden in those that are vaccinated due to imperfect vaccines, and in those that are not able to be vaccinated due to other underlying health conditions. Using England as a case study, we estimate that this translates to a societal loss of GBP 292 million and disease burden of 17 630 quality-adjusted-life-years (sensitivity range 10 594-50 379) over a 20-year time horizon. Of these costs, 26 % are attributable to healthcare costs and 74 % to productivity losses for patients and their carers. This translates to a societal loss per vaccine refusal of GBP 162.21 and 0.01 (0.006-0.03) quality-adjusted-life-years. INTERPRETATION: Our findings demonstrate that even low levels of vaccine refusal can have a substantial and measurable societal burden on the population. These estimates can support the value of investment in interventions that address vaccine hesitancy and vaccine refusal, providing not only improved public health but also potential economic benefits to society.


Assuntos
Sarampo , Vacinação , Humanos , Sarampo/epidemiologia , Surtos de Doenças , Recusa de Vacinação , Custos de Cuidados de Saúde , Análise Custo-Benefício , Vacina contra Sarampo
3.
Vaccine ; 41(20): 3215-3223, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37080831

RESUMO

BACKGROUND: The World Health Organization has recommended a 4-dose schedule of the RTS,S/AS01 (RTS,S) vaccine for children in regions of moderate to high P. falciparum transmission. Faced with limited supply and finite resources, global funders and domestic malaria control programs will need to examine the relative cost-effectiveness of RTS,S and identify target areas for vaccine implementation relative to scale-up of existing interventions. METHODS: Using an individual-based mathematical model of P. falciparum, we modelled the cost-effectiveness of RTS,S across a range of settings in sub-Saharan Africa, incorporating various rainfall patterns, insecticide-treated net (ITN) use, treatment coverage, and parasite prevalence bands. We compare age-based and seasonal RTS,S administration to increasing ITN usage, switching to next generation ITNs in settings experiencing insecticide-resistance, and introduction of seasonal malaria chemoprevention (SMC) in areas of seasonal transmission. RESULTS: For RTS,S to be the most cost-effective intervention option considered, the maximum cost per dose was less than $9.30 USD in 90.9% of scenarios. Nearly all (89.8%) values at or above $9.30 USD per dose were in settings with 60% established bed net use and / or with established SMC, and 76.3% were in the highest PfPR2-10 band modelled (40%). Addition of RTS,S to strategies involving 60% ITN use, increased ITN usage or a switch to PBO nets, and SMC, if eligible, still led to significant marginal case reductions, with a median of 2,653 (IQR: 1,741 to 3,966) cases averted per 100,000 people annually, and 82,270 (IQR: 54,034 to 123,105) cases averted per 100,000 fully vaccinated children (receiving at least three doses). CONCLUSIONS: Use of RTS,S results in reductions in malaria cases and deaths even when layered upon existing interventions. When comparing relative cost-effectiveness, scale up of ITNs, introduction of SMC, and switching to new technology nets should be prioritized in eligible settings.


Assuntos
Inseticidas , Vacinas Antimaláricas , Malária Falciparum , Malária , Criança , Humanos , Lactente , Análise Custo-Benefício , Malária/prevenção & controle , Malária Falciparum/prevenção & controle , Malária Falciparum/epidemiologia , Quimioprevenção
4.
Clin Infect Dis ; 75(1): e224-e233, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34549260

RESUMO

BACKGROUND: The public health impact of the coronavirus disease 2019 (COVID-19) pandemic has motivated a rapid search for potential therapeutics, with some key successes. However, the potential impact of different treatments, and consequently research and procurement priorities, have not been clear. METHODS: Using a mathematical model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission, COVID-19 disease and clinical care, we explore the public-health impact of different potential therapeutics, under a range of scenarios varying healthcare capacity, epidemic trajectories; and drug efficacy in the absence of supportive care. RESULTS: The impact of drugs like dexamethasone (delivered to the most critically-ill in hospital and whose therapeutic benefit is expected to depend on the availability of supportive care such as oxygen and mechanical ventilation) is likely to be limited in settings where healthcare capacity is lowest or where uncontrolled epidemics result in hospitals being overwhelmed. As such, it may avert 22% of deaths in high-income countries but only 8% in low-income countries (assuming R = 1.35). Therapeutics for different patient populations (those not in hospital, early in the course of infection) and types of benefit (reducing disease severity or infectiousness, preventing hospitalization) could have much greater benefits, particularly in resource-poor settings facing large epidemics. CONCLUSIONS: Advances in the treatment of COVID-19 to date have been focused on hospitalized-patients and predicated on an assumption of adequate access to supportive care. Therapeutics delivered earlier in the course of infection that reduce the need for healthcare or reduce infectiousness could have significant impact, and research into their efficacy and means of delivery should be a priority.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Efeitos Psicossociais da Doença , Humanos , Pandemias/prevenção & controle , Preparações Farmacêuticas
5.
Nat Comput Sci ; 2(4): 223-233, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38177553

RESUMO

To study the trade-off between economic, social and health outcomes in the management of a pandemic, DAEDALUS integrates a dynamic epidemiological model of SARS-CoV-2 transmission with a multi-sector economic model, reflecting sectoral heterogeneity in transmission and complex supply chains. The model identifies mitigation strategies that optimize economic production while constraining infections so that hospital capacity is not exceeded but allowing essential services, including much of the education sector, to remain active. The model differentiates closures by economic sector, keeping those sectors open that contribute little to transmission but much to economic output and those that produce essential services as intermediate or final consumption products. In an illustrative application to 63 sectors in the United Kingdom, the model achieves an economic gain of between £161 billion (24%) and £193 billion (29%) compared to a blanket lockdown of non-essential activities over six months. Although it has been designed for SARS-CoV-2, DAEDALUS is sufficiently flexible to be applicable to pandemics with different epidemiological characteristics.

6.
J Glob Health ; 11: 04013, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33791093

RESUMO

BACKGROUND: Integrated community case management (iCCM) is a programme that can, via community health workers (CHWs), increase access to timely and essential treatments for children. As well as improving treatment coverage, iCCM has an additional equity-focus with the aim of targeting underserved populations. To assess the success of iCCM programmes it is important that we understand the contribution they are making to equitable health coverage. METHODS: We analysed demographic and health survey data from 21 countries over 9 years to assess evidence and evaluate iCCM programmes. We summarise the contribution CHWs are making relative to other health care provider groups and what treatment combinations CHWs are commonly prescribing. We assessed the ability of CHWs to target treatment delays and health inequities by evaluating time to treatment following fever onset and relationships between CHWs and wealth, rurality and remoteness. RESULTS: There was good evidence that CHWs are being successfully targeted to improve inequities in health care coverage. There is a larger contribution of CHWs in areas with higher poverty, rurality and remoteness. In six surveys CHWs were associated with significantly shorter average time between fever onset and advice or treatment seeking, whilst in one they were associated with significantly longer times. In areas with active CHW programmes, the contribution of CHWs relative to other health care provider groups varied between 11% to 45% of treatment visits. The distribution of types of treatment provided by CHWs was also very variable between countries. CONCLUSIONS: The success of an iCCM programme depends not only on increasing treatment coverage but addressing inequities in access to timely health care. Whilst much work is still needed to attain universal health care targets, and despite incomplete data, there is evidence that iCCM is successfully addressing treatment delays and targeting underserved populations.


Assuntos
Administração de Caso , Tempo para o Tratamento , Criança , Agentes Comunitários de Saúde , Demografia , Humanos , População Rural
7.
Lancet Glob Health ; 9(2): e199-e208, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33482140

RESUMO

BACKGROUND: The intermittent administration of seasonal malaria chemoprevention (SMC) is recommended to prevent malaria among children aged 3-59 months in areas of the Sahel subregion in Africa. However, the cost-effectiveness and cost savings of SMC have not previously been evaluated in large-scale studies. METHODS: We did a cost-effectiveness and cost-savings analysis of a large-scale, multi-country SMC campaign with sulfadoxine-pyrimethamine plus amodiaquine for children younger than 5 years in seven countries in the Sahel subregion (Burkina Faso, Chad, Guinea, Mali, Niger, Nigeria, and The Gambia) in 2016. The financial and economic costs were analysed from the programmatic perspective and are reported in 2016 US$ for each country. The estimated numbers of averted malaria cases, deaths, and disability-adjusted life-years (DALYs) were based on numbers of SMC treatments administered and modelled malaria transmission. Cost savings were calculated from a programmatic perspective corresponding to the diagnostic and treatment costs for malaria cases averted. FINDINGS: The total cost of SMC for all seven countries was $22·8 million, and the weighted average economic cost of administering four monthly SMC cycles was $3·63 per child (ranging from $2·71 in Niger to $8·20 in The Gambia). Based on 80% modelled effectiveness of SMC, the incremental economic cost per malaria case averted ranged from $2·91 in Niger to $30·73 in The Gambia; the cost per severe case averted ranged from $119·63 in Niger to $506·00 in The Gambia; the cost per death averted ranged from $533·56 in Niger to $2256·92 in The Gambia; and the cost per DALY averted (discounted by 3%) ranged from $18·66 in Niger to $78·91 in The Gambia. The estimated total economic cost savings to the health systems in all seven countries were US$66·0 million and the total net economic cost savings were US$43·2 million. INTERPRETATION: SMC is a low-cost and highly cost-effective intervention that contributes to substantial cost savings by reducing malaria diagnostic and treatment costs among children. FUNDING: Unitaid.


Assuntos
Antimaláricos/uso terapêutico , Quimioprevenção , Redução de Custos , Análise Custo-Benefício , Malária/prevenção & controle , Anos de Vida Ajustados por Qualidade de Vida , Estações do Ano , África , Quimioprevenção/economia , Criança , Pré-Escolar , Humanos , Lactente
8.
Lancet Glob Health ; 8(9): e1132-e1141, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32673577

RESUMO

BACKGROUND: COVID-19 has the potential to cause substantial disruptions to health services, due to cases overburdening the health system or response measures limiting usual programmatic activities. We aimed to quantify the extent to which disruptions to services for HIV, tuberculosis, and malaria in low-income and middle-income countries with high burdens of these diseases could lead to additional loss of life over the next 5 years. METHODS: Assuming a basic reproduction number of 3·0, we constructed four scenarios for possible responses to the COVID-19 pandemic: no action, mitigation for 6 months, suppression for 2 months, or suppression for 1 year. We used established transmission models of HIV, tuberculosis, and malaria to estimate the additional impact on health that could be caused in selected settings, either due to COVID-19 interventions limiting activities, or due to the high demand on the health system due to the COVID-19 pandemic. FINDINGS: In high-burden settings, deaths due to HIV, tuberculosis, and malaria over 5 years could increase by up to 10%, 20%, and 36%, respectively, compared with if there was no COVID-19 pandemic. The greatest impact on HIV was estimated to be from interruption to antiretroviral therapy, which could occur during a period of high health system demand. For tuberculosis, the greatest impact would be from reductions in timely diagnosis and treatment of new cases, which could result from any prolonged period of COVID-19 suppression interventions. The greatest impact on malaria burden could be as a result of interruption of planned net campaigns. These disruptions could lead to a loss of life-years over 5 years that is of the same order of magnitude as the direct impact from COVID-19 in places with a high burden of malaria and large HIV and tuberculosis epidemics. INTERPRETATION: Maintaining the most critical prevention activities and health-care services for HIV, tuberculosis, and malaria could substantially reduce the overall impact of the COVID-19 pandemic. FUNDING: Bill & Melinda Gates Foundation, Wellcome Trust, UK Department for International Development, and Medical Research Council.


Assuntos
Infecções por Coronavirus/epidemiologia , Países em Desenvolvimento , Infecções por HIV/prevenção & controle , Acessibilidade aos Serviços de Saúde , Malária/prevenção & controle , Pandemias , Pneumonia Viral/epidemiologia , Tuberculose/prevenção & controle , COVID-19 , Infecções por HIV/epidemiologia , Infecções por HIV/mortalidade , Humanos , Malária/epidemiologia , Malária/mortalidade , Modelos Teóricos , Tuberculose/epidemiologia , Tuberculose/mortalidade
9.
Malar J ; 18(1): 122, 2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30961603

RESUMO

BACKGROUND: A core set of intervention and treatment options are recommended by the World Health Organization for use against falciparum malaria. These are treatment, long-lasting insecticide-treated bed nets, indoor residual spraying, and chemoprevention options. Both domestic and foreign aid funding for these tools is limited. When faced with budget restrictions, the introduction and scale-up of intervention and treatment options must be prioritized. METHODS: Estimates of the cost and impact of different interventions were combined with a mathematical model of malaria transmission to estimate the most cost-effective prioritization of interventions. The incremental cost effectiveness ratio was used to select between scaling coverage of current interventions or the introduction of an additional intervention tool. RESULTS: Prevention, in the form of vector control, is highly cost effective and scale-up is prioritized in all scenarios. Prevention reduces malaria burden and therefore allows treatment to be implemented in a more cost-effective manner by reducing the strain on the health system. The chemoprevention measures (seasonal malaria chemoprevention and intermittent preventive treatment in infants) are additional tools that, provided sufficient funding, are implemented alongside treatment scale-up. Future tools, such as RTS,S vaccine, have impact in areas of higher transmission but were introduced later than core interventions. CONCLUSIONS: In a programme that is budget restricted, it is essential that investment in available tools be effectively prioritized to maximize impact for a given investment. The cornerstones of malaria control: vector control and treatment, remain vital, but questions of when to scale and when to introduce other interventions must be rigorously assessed. This quantitative analysis considers the scale-up or core interventions to inform decision making in this area.


Assuntos
Controle de Doenças Transmissíveis/economia , Análise Custo-Benefício , Erradicação de Doenças/economia , Malária Falciparum/prevenção & controle , Controle de Doenças Transmissíveis/métodos , Erradicação de Doenças/métodos , Humanos , Modelos Teóricos
10.
PLoS Negl Trop Dis ; 13(4): e0007301, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30969966

RESUMO

BACKGROUND: The cestode Taenia solium causes the neglected (zoonotic) tropical disease cysticercosis, a leading cause of preventable epilepsy in endemic low and middle-income countries. Transmission models can inform current scaling-up of control efforts by helping to identify, validate and optimise control and elimination strategies as proposed by the World Health Organization (WHO). METHODOLOGY/PRINCIPAL FINDINGS: A systematic literature search was conducted using the PRISMA approach to identify and compare existing T. solium transmission models, and related Taeniidae infection transmission models. In total, 28 modelling papers were identified, of which four modelled T. solium exclusively. Different modelling approaches for T. solium included deterministic, Reed-Frost, individual-based, decision-tree, and conceptual frameworks. Simulated interventions across models agreed on the importance of coverage for impactful effectiveness to be achieved. Other Taeniidae infection transmission models comprised force-of-infection (FoI), population-based (mainly Echinococcus granulosus) and individual-based (mainly E. multilocularis) modelling approaches. Spatial structure has also been incorporated (E. multilocularis and Taenia ovis) in recognition of spatial aggregation of parasite eggs in the environment and movement of wild animal host populations. CONCLUSIONS/SIGNIFICANCE: Gaps identified from examining the wider Taeniidae family models highlighted the potential role of FoI modelling to inform model parameterisation, as well as the need for spatial modelling and suitable structuring of interventions as key areas for future T. solium model development. We conclude that working with field partners to address data gaps and conducting cross-model validation with baseline and longitudinal data will be critical to building consensus-led and epidemiological setting-appropriate intervention strategies to help fulfil the WHO targets.


Assuntos
Cisticercose/veterinária , Modelos Biológicos , Doenças dos Suínos/transmissão , Teníase/veterinária , Zoonoses/transmissão , Animais , Animais Selvagens , Cisticercose/transmissão , Erradicação de Doenças , Humanos , Controle de Infecções , Suínos , Doenças dos Suínos/parasitologia , Taenia solium , Teníase/transmissão , Organização Mundial da Saúde , Zoonoses/parasitologia
11.
BMJ Glob Health ; 2(1): e000090, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28588994

RESUMO

OBJECTIVES: To evaluate the relative cost-effectiveness of introducing the RTS,S malaria vaccine in sub-Saharan Africa compared with further scale-up of existing interventions. DESIGN: A mathematical modelling and cost-effectiveness study. SETTING: Sub-Saharan Africa. PARTICIPANTS: People of all ages. INTERVENTIONS: The analysis considers the introduction and scale-up of the RTS,S malaria vaccine and the scale-up of long-lasting insecticide-treated bed nets (LLINs), indoor residual spraying (IRS) and seasonal malaria chemoprevention (SMC). MAIN OUTCOME MEASURE: The number of Plasmodium falciparum cases averted in all age groups over a 10-year period. RESULTS: Assuming access to treatment remains constant, increasing coverage of LLINs was consistently the most cost-effective intervention across a range of transmission settings and was found to occur early in the cost-effectiveness scale-up pathway. IRS, RTS,S and SMC entered the cost-effective pathway once LLIN coverage had been maximised. If non-linear production functions are included to capture the cost of reaching very high coverage, the resulting pathways become more complex and result in selection of multiple interventions. CONCLUSIONS: RTS,S was consistently implemented later in the cost-effectiveness pathway than the LLINs, IRS and SMC but was still of value as a fourth intervention in many settings to reduce burden to the levels set out in the international goals.

12.
PLoS Negl Trop Dis ; 9(8): e0003999, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26270533

RESUMO

BACKGROUND: Aedes aegypti is the primary vector of dengue fever, a viral disease which has an estimated incidence of 390 million infections annually. Conventional vector control methods have been unable to curb the transmission of the disease. We have previously reported a novel method of vector control using a tetracycline repressible self-limiting strain of Ae. aegypti OX513A which has achieved >90% suppression of wild populations. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the impact of tetracycline and its analogues on the phenotype of OX513A from the perspective of possible routes and levels of environmental exposure. We determined the minimum concentration of tetracycline and its analogues that will allow an increased survivorship and found these to be greater than the maximum concentration of tetracyclines found in known Ae. aegypti breeding sites and their surrounding areas. Furthermore, we determined that OX513A parents fed tetracycline are unable to pre-load their progeny with sufficient antidote to increase their survivorship. Finally, we studied the changes in concentration of tetracycline in the mass production rearing water of OX513A and the developing insect. CONCLUSION/SIGNIFICANCE: Together, these studies demonstrate that potential routes of exposure of OX513A individuals to tetracycline and its analogues in the environment are not expected to increase the survivorship of OX513A.


Assuntos
Aedes/efeitos dos fármacos , Antibacterianos/farmacologia , Clortetraciclina/farmacologia , Insetos Vetores/efeitos dos fármacos , Aedes/classificação , Aedes/genética , Animais , Animais Geneticamente Modificados , Doxiciclina/farmacologia , Feminino , Água Doce/química , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Letais , Heterozigoto , Insetos Vetores/classificação , Insetos Vetores/genética , Larva/efeitos dos fármacos , Larva/genética , Masculino , Oxitetraciclina/farmacologia , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA