Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Lancet Digit Health ; 3(6): e349-e359, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34045001

RESUMO

BACKGROUND: Until broad vaccination coverage is reached and effective therapeutics are available, controlling population mobility (ie, changes in the spatial location of a population that affect the spread and distribution of pathogens) is one of the major interventions used to reduce transmission of SARS-CoV-2. However, population mobility differs across locations, which could reduce the effectiveness of pandemic control measures. Here we assess the extent to which socioeconomic factors are associated with reductions in population mobility during the COVID-19 pandemic, at both the city level in China and at the country level worldwide. METHODS: In this retrospective, observational study, we obtained anonymised daily mobile phone location data for 358 Chinese cities from Baidu, and for 121 countries from Google COVID-19 Community Mobility Reports. We assessed the intra-city movement intensity, inflow intensity, and outflow intensity of each Chinese city between Jan 25 (when the national emergency response was implemented) and Feb 18, 2020 (when population mobility was lowest) and compared these data to the corresponding lunar calendar period from the previous year (Feb 5 to March 1, 2019). Chinese cities were classified into four socioeconomic index (SEI) groups (high SEI, high-middle SEI, middle SEI, and low SEI) and the association between socioeconomic factors and changes in population mobility were assessed using univariate and multivariable linear regression. At the country level, we compared six types of mobility (residential, transit stations, workplaces, retail and recreation, parks, and groceries and pharmacies) 35 days after the implementation of the national emergency response in each country and compared these to data from the same day of the week in the baseline period (Jan 3 to Feb 6, 2020). We assessed associations between changes in the six types of mobility and the country's sociodemographic index using univariate and multivariable linear regression. FINDINGS: The reduction in intra-city movement intensity in China was stronger in cities with a higher SEI than in those with a lower SEI (r=-0·47, p<0·0001). However, reductions in inter-city movement flow (both inflow and outflow intensity) were not associated with SEI and were only associated with government control measures. In the country-level analysis, countries with higher sociodemographic and Universal Health Coverage indexes had greater reductions in population mobility (ie, in transit stations, workplaces, and retail and recreation) following national emergency declarations than those with lower sociodemographic and Universal Health Coverage indexes. A higher sociodemographic index showed a greater reduction in mobility in transit stations (r=-0·27, p=0·0028), workplaces (r=-0·34, p=0·0002), and areas retail and recreation (rxs=-0·30, p=0·0012) than those with a lower sociodemographic index. INTERPRETATION: Although COVID-19 outbreaks are more frequently reported in larger cities, our analysis shows that future policies should prioritise the reduction of risks in areas with a low socioeconomic level-eg, by providing financial assistance and improving public health messaging. However, our study design only allows us to assess associations, and a long-term study is needed to decipher causality. FUNDING: Chinese Ministry of Science and Technology, Research Council of Norway, Beijing Municipal Science & Technology Commission, Beijing Natural Science Foundation, Beijing Advanced Innovation Program for Land Surface Science, National Natural Science Foundation of China, China Association for Science and Technology.


Assuntos
COVID-19 , Dinâmica Populacional , Fatores Socioeconômicos , Viagem , Adulto , Telefone Celular , China , Cidades , Saúde Global , Humanos , Distanciamento Físico , Dinâmica Populacional/tendências , Vigilância da População/métodos , Estudos Retrospectivos , SARS-CoV-2
2.
BMJ Glob Health ; 6(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33926892

RESUMO

INTRODUCTION: Little evidence exists on the differential health effects of COVID-19 on disadvantaged population groups. Here we characterise the differential risk of hospitalisation and death in São Paulo state, Brazil, and show how vulnerability to COVID-19 is shaped by socioeconomic inequalities. METHODS: We conducted a cross-sectional study using hospitalised severe acute respiratory infections notified from March to August 2020 in the Sistema de Monitoramento Inteligente de São Paulo database. We examined the risk of hospitalisation and death by race and socioeconomic status using multiple data sets for individual-level and spatiotemporal analyses. We explained these inequalities according to differences in daily mobility from mobile phone data, teleworking behaviour and comorbidities. RESULTS: Throughout the study period, patients living in the 40% poorest areas were more likely to die when compared with patients living in the 5% wealthiest areas (OR: 1.60, 95% CI 1.48 to 1.74) and were more likely to be hospitalised between April and July 2020 (OR: 1.08, 95% CI 1.04 to 1.12). Black and Pardo individuals were more likely to be hospitalised when compared with White individuals (OR: 1.41, 95% CI 1.37 to 1.46; OR: 1.26, 95% CI 1.23 to 1.28, respectively), and were more likely to die (OR: 1.13, 95% CI 1.07 to 1.19; 1.07, 95% CI 1.04 to 1.10, respectively) between April and July 2020. Once hospitalised, patients treated in public hospitals were more likely to die than patients in private hospitals (OR: 1.40%, 95% CI 1.34% to 1.46%). Black individuals and those with low education attainment were more likely to have one or more comorbidities, respectively (OR: 1.29, 95% CI 1.19 to 1.39; 1.36, 95% CI 1.27 to 1.45). CONCLUSIONS: Low-income and Black and Pardo communities are more likely to die with COVID-19. This is associated with differential access to quality healthcare, ability to self-isolate and the higher prevalence of comorbidities.


Assuntos
COVID-19/etnologia , COVID-19/mortalidade , Etnicidade/estatística & dados numéricos , Mortalidade Hospitalar/etnologia , Pneumonia Viral , Áreas de Pobreza , Características de Residência/estatística & dados numéricos , Adulto , Idoso , Idoso de 80 Anos ou mais , Brasil/epidemiologia , Estudos Transversais , Feminino , Disparidades nos Níveis de Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/epidemiologia , SARS-CoV-2 , Estudos Soroepidemiológicos , Fatores Socioeconômicos
3.
Lancet Infect Dis ; 19(10): 1138-1147, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31559967

RESUMO

BACKGROUND: Zika virus infections and suspected microcephaly cases have been reported in Angola since late 2016, but no data are available about the origins, epidemiology, and diversity of the virus. We aimed to investigate the emergence and circulation of Zika virus in Angola. METHODS: Diagnostic samples collected by the Angolan Ministry of Health as part of routine arboviral surveillance were tested by real-time reverse transcription PCR by the Instituto Nacional de Investigação em Saúde (Ministry of Health, Luanda, Angola). To identify further samples positive for Zika virus and appropriate for genomic sequencing, we also tested samples from a 2017 study of people with HIV in Luanda. Portable sequencing was used to generate Angolan Zika virus genome sequences from three people positive for Zika virus infection by real-time reverse transcription PCR, including one neonate with microcephaly. Genetic and mobility data were analysed to investigate the date of introduction and geographical origin of Zika virus in Angola. Brain CT and MRI, and serological assays were done on a child with microcephaly to confirm microcephaly and assess previous Zika virus infection. FINDINGS: Serum samples from 54 people with suspected acute Zika virus infection, 76 infants with suspected microcephaly, 24 mothers of infants with suspected microcephaly, 336 patients with suspected dengue virus or chikungunya virus infection, and 349 samples from the HIV study were tested by real-time reverse transcription PCR. Four cases identified between December, 2016, and June, 2017, tested positive for Zika virus. Analyses of viral genomic and human mobility data suggest that Zika virus was probably introduced to Angola from Brazil between July, 2015, and June, 2016. This introduction probably initiated local circulation of Zika virus in Angola that continued until at least June, 2017. The infant with microcephaly in whom CT and MRI were done had brain abnormalities consistent with congenital Zika syndrome and serological evidence for Zika virus infection. INTERPRETATION: Our analyses show that autochthonous transmission of the Asian lineage of Zika virus has taken place in Africa. Zika virus surveillance and surveillance of associated cases of microcephaly throughout the continent is crucial. FUNDING: Royal Society, Wellcome Trust, Global Challenges Research Fund (UK Research and Innovation), Africa Oxford, John Fell Fund, Oxford Martin School, European Research Council, Departamento de Ciência e Tecnologia/Ministério da Saúde/National Council for Scientific and Technological Development, and Ministério da Educação/Coordenação de Aperfeicoamento de Pessoal de Nível Superior.


Assuntos
Surtos de Doenças , Transmissão Vertical de Doenças Infecciosas , Filogenia , Complicações Infecciosas na Gravidez/virologia , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/transmissão , Zika virus/genética , Angola/epidemiologia , Sequência de Bases , Feminino , Genoma Viral/genética , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Microcefalia/sangue , Microcefalia/etiologia , Microcefalia/virologia , Mães , Gravidez , RNA Viral/genética , Infecção por Zika virus/complicações , Infecção por Zika virus/virologia
4.
PLoS Comput Biol ; 15(4): e1006650, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30958812

RESUMO

Elaboration of Bayesian phylogenetic inference methods has continued at pace in recent years with major new advances in nearly all aspects of the joint modelling of evolutionary data. It is increasingly appreciated that some evolutionary questions can only be adequately answered by combining evidence from multiple independent sources of data, including genome sequences, sampling dates, phenotypic data, radiocarbon dates, fossil occurrences, and biogeographic range information among others. Including all relevant data into a single joint model is very challenging both conceptually and computationally. Advanced computational software packages that allow robust development of compatible (sub-)models which can be composed into a full model hierarchy have played a key role in these developments. Developing such software frameworks is increasingly a major scientific activity in its own right, and comes with specific challenges, from practical software design, development and engineering challenges to statistical and conceptual modelling challenges. BEAST 2 is one such computational software platform, and was first announced over 4 years ago. Here we describe a series of major new developments in the BEAST 2 core platform and model hierarchy that have occurred since the first release of the software, culminating in the recent 2.5 release.


Assuntos
Teorema de Bayes , Evolução Biológica , Filogenia , Software , Animais , Biologia Computacional , Simulação por Computador , Evolução Molecular , Humanos , Cadeias de Markov , Modelos Genéticos , Método de Monte Carlo
5.
Proc Natl Acad Sci U S A ; 114(42): E8822-E8829, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29073028

RESUMO

Understanding how and why language subsystems differ in their evolutionary dynamics is a fundamental question for historical and comparative linguistics. One key dynamic is the rate of language change. While it is commonly thought that the rapid rate of change hampers the reconstruction of deep language relationships beyond 6,000-10,000 y, there are suggestions that grammatical structures might retain more signal over time than other subsystems, such as basic vocabulary. In this study, we use a Dirichlet process mixture model to infer the rates of change in lexical and grammatical data from 81 Austronesian languages. We show that, on average, most grammatical features actually change faster than items of basic vocabulary. The grammatical data show less schismogenesis, higher rates of homoplasy, and more bursts of contact-induced change than the basic vocabulary data. However, there is a core of grammatical and lexical features that are highly stable. These findings suggest that different subsystems of language have differing dynamics and that careful, nuanced models of language change will be needed to extract deeper signal from the noise of parallel evolution, areal readaptation, and contact.


Assuntos
Evolução Biológica , Idioma , Teorema de Bayes , Bases de Dados Factuais , Humanos , Linguística/métodos , Método de Monte Carlo , Oceania , Papua Nova Guiné , Filogenia , Vocabulário
6.
Mol Biol Evol ; 30(3): 669-88, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23233462

RESUMO

Probabilistic inference of a phylogenetic tree from molecular sequence data is predicated on a substitution model describing the relative rates of change between character states along the tree for each site in the multiple sequence alignment. Commonly, one assumes that the substitution model is homogeneous across sites within large partitions of the alignment, assigns these partitions a priori, and then fixes their underlying substitution model to the best-fitting model from a hierarchy of named models. Here, we introduce an automatic model selection and model averaging approach within a Bayesian framework that simultaneously estimates the number of partitions, the assignment of sites to partitions, the substitution model for each partition, and the uncertainty in these selections. This new approach is implemented as an add-on to the BEAST 2 software platform. We find that this approach dramatically improves the fit of the nucleotide substitution model compared with existing approaches, and we show, using a number of example data sets, that as many as nine partitions are required to explain the heterogeneity in nucleotide substitution process across sites in a single gene analysis. In some instances, this improved modeling of the substitution process can have a measurable effect on downstream inference, including the estimated phylogeny, relative divergence times, and effective population size histories.


Assuntos
Modelos Genéticos , Filogenia , Mutação Puntual , Algoritmos , Animais , Teorema de Bayes , Análise por Conglomerados , Simulação por Computador , Ebolavirus/genética , Evolução Molecular , Genoma Viral , Hepacivirus/genética , Humanos , Cadeias de Markov , Método de Monte Carlo , Vírus Sinciciais Respiratórios/genética , Alinhamento de Sequência , Software
7.
Infect Genet Evol ; 11(8): 1825-41, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21906695

RESUMO

Epidemic modeling of infectious diseases has a long history in both theoretical and empirical research. However the recent explosion of genetic data has revealed the rapid rate of evolution that many populations of infectious agents undergo and has underscored the need to consider both evolutionary and ecological processes on the same time scale. Mathematical epidemiology has applied dynamical models to study infectious epidemics, but these models have tended not to exploit--or take into account--evolutionary changes and their effect on the ecological processes and population dynamics of the infectious agent. On the other hand, statistical phylogenetics has increasingly been applied to the study of infectious agents. This approach is based on phylogenetics, molecular clocks, genealogy-based population genetics and phylogeography. Bayesian Markov chain Monte Carlo and related computational tools have been the primary source of advances in these statistical phylogenetic approaches. Recently the first tentative steps have been taken to reconcile these two theoretical approaches. We survey the Bayesian phylogenetic approach to epidemic modeling of infection diseases and describe the contrasts it provides to mathematical epidemiology as well as emphasize the significance of the future unification of these two fields.


Assuntos
Evolução Biológica , Doenças Transmissíveis/classificação , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/genética , Modelos Teóricos , Animais , Teorema de Bayes , Epidemias , Humanos , Cadeias de Markov , Método de Monte Carlo , Filogenia
8.
Genetics ; 188(1): 151-64, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21385725

RESUMO

We provide a framework for Bayesian coalescent inference from microsatellite data that enables inference of population history parameters averaged over microsatellite mutation models. To achieve this we first implemented a rich family of microsatellite mutation models and related components in the software package BEAST. BEAST is a powerful tool that performs Bayesian MCMC analysis on molecular data to make coalescent and evolutionary inferences. Our implementation permits the application of existing nonparametric methods to microsatellite data. The implemented microsatellite models are based on the replication slippage mechanism and focus on three properties of microsatellite mutation: length dependency of mutation rate, mutational bias toward expansion or contraction, and number of repeat units changed in a single mutation event. We develop a new model that facilitates microsatellite model averaging and Bayesian model selection by transdimensional MCMC. With Bayesian model averaging, the posterior distributions of population history parameters are integrated across a set of microsatellite models and thus account for model uncertainty. Simulated data are used to evaluate our method in terms of accuracy and precision of estimation and also identification of the true mutation model. Finally we apply our method to a red colobus monkey data set as an example.


Assuntos
Colobus/genética , Genealogia e Heráldica , Cadeias de Markov , Repetições de Microssatélites/genética , Modelos Genéticos , Método de Monte Carlo , Mutação/genética , Animais , Simulação por Computador , Loci Gênicos/genética , Humanos , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA