Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ultrasonics ; 138: 107227, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38118237

RESUMO

Ultrasonic cavitation, characterized by the oscillation or abrupt collapse of cavitation nuclei in response to ultrasound stimulation, plays a significant role in various applications within both industrial and biomedical sectors. In particular, inertial cavitation (IC) has garnered considerable attention due to the resulting mechanical, chemical, and thermal effects. Passive cavitation detection (PCD) has emerged as a valuable technique for monitoring this procedure. While the fast Fourier transform (FFT) is a widely used algorithm to analyze IC-induced broadband noise detected by PCD system, it may not adequately capture the time-varying instability of cavitation due to potential nuclei collapse during ultrasound irradiation. In contrast, the continuous wavelet transform offers a more flexible approach, enabling more sensitive analysis of signals with varying frequencies over time. In this study, nanodiamond (ND) and its derivative, nitro-doped nanodiamond (N-AND), known to possess cavitation potential from previous research, were chosen as the source of cavitation nuclei. The cavitation signals detected by PCD were subjected to both FFT and wavelet analyses, with their results comprehensively compared. This research showcased the feasibility of employing wavelet analysis for effective inertial cavitation evaluation. It provided the advantage of monitoring the temporal evolution of cavitation events in real-time, enhancing sensitivity to weak and unstable cavitation signals, especially those in higher order components (3rd and 4th order). Additionally, it yielded a higher level of precision in determining IC thresholds and doses. Furthermore, the inclusion of time information through wavelet analysis offered insights into the limitations of low-cycle ultrasound in inducing IC. This study introduces a novel perspective for more sensitive and precise cavitation assessment, leveraging time and frequency data from wavelet analysis, and holds promise for effective utilization of cavitation effects while minimizing losses and damages resulting from unintended cavitation events.

2.
Sci Total Environ ; 845: 157257, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35817111

RESUMO

Suspended particulate matter (SPM) and sediments are important sources of dissolved organic matter (DOM) in lake water. However, studies on what extent and how both sources affect DOM composition are lacking, which hampers DOM management. Herein, DOM, SPM-extracted particulate organic matter (POM), and sediment-extracted organic matter (SOM) were characterized and compared in terms of absorption spectral properties and chemical composition in Lake Taihu, a large cyanobacterial bloom-affected shallow lake. A statistical method was proposed to quantify the similarity of organic matter (OM) in the different states and to evaluate the potential effects of SPM and sediments on DOM. Results showed that POM and DOM were mainly composed of small-molecular-size and low-humified organic components (i.e., 27 %-38 % tryptophan-like and ~30 % protein-like substances), and most of them were derived from autochthonous sources. While tyrosine-like (57 %) and humic-like (27 %) substances were dominant in SOM. The OM similarity between POM and DOM was approximately 1.5 times higher than that between SOM and DOM, indicating the greater effect of SPM than sediments on DOM composition. High pH and low nitrogen (e.g., nitrate and ammonia) were positively correlated to the OM similarity between POM and DOM. Further, the findings indicated that nitrogen limitation enhanced the OM exchange between POM and DOM by promoting the production of extracellular polymeric substances (EPS) in cyanobacterial aggregates. The obtained findings highlighted the importance of SPM in shaping the DOM composition relative to sediments and facilitating the DOM management in bloom-affected lakes.


Assuntos
Cianobactérias , Lagos , China , Matéria Orgânica Dissolvida , Substâncias Húmicas/análise , Lagos/química , Nitrogênio , Material Particulado/análise , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA