Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Br J Clin Pharmacol ; 90(5): 1213-1221, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38317382

RESUMO

AIMS: Levofloxacin is a quinolone antibiotic with a broad antibacterial spectrum. It is frequently used in elderly patients with pneumonia. The pharmacokinetic profile of elderly patients changes with age, but data on the pharmacokinetics of levofloxacin in these patients are limited. The aim of this study was to establish a population pharmacokinetic model of levofloxacin in elderly patients with pneumonia and to optimize individualized dosing regimens based on this newly developed model. METHODS: This is a prospective, open-label pharmacokinetic study in elderly patients with pneumonia. Blood samples were collected using an opportunistic approach. The plasma concentrations of levofloxacin were determined by high-performance liquid chromatography. A population pharmacokinetic model was established using nonlinear mixed-effect model software. Monte Carlo simulations were used for dose simulation and dose optimization. RESULTS: Data from 51 elderly patients with pneumonia were used for the population pharmacokinetic analysis. A one-compartment model with first-order elimination was most suitable for describing the data, and the estimated glomerular filtration rate was the only covariate that had a significant impact on the model. The final model estimated that the mean clearance of levofloxacin in elderly patients with pneumonia was 5.26 L/h. Monte Carlo simulation results showed that the optimal dosing regimen for levofloxacin was 750 mg once a day in elderly patients with pneumonia, with a minimum inhibitory concentration of 2 mg/L. CONCLUSIONS: The population pharmacokinetic model of levofloxacin in elderly patients with pneumonia was established, and the dose optimization of levofloxacin was completed through Monte Carlo simulation.


Assuntos
Antibacterianos , Levofloxacino , Modelos Biológicos , Método de Monte Carlo , Pneumonia , Humanos , Levofloxacino/farmacocinética , Levofloxacino/administração & dosagem , Levofloxacino/sangue , Idoso , Masculino , Antibacterianos/farmacocinética , Antibacterianos/administração & dosagem , Feminino , Idoso de 80 Anos ou mais , Estudos Prospectivos , Pneumonia/tratamento farmacológico , Relação Dose-Resposta a Droga , Taxa de Filtração Glomerular , Simulação por Computador
2.
J Antimicrob Chemother ; 77(8): 2238-2244, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35662337

RESUMO

OBJECTIVES: Mezlocillin is used in the treatment of neonatal infectious diseases. However, due to the absence of population pharmacokinetic studies in neonates and young infants, dosing regimens differ considerably in clinical practice. Hence, this study aimed to describe the pharmacokinetic characteristics of mezlocillin in neonates and young infants, and propose the optimal dosing regimen based on the population pharmacokinetic model of mezlocillin. METHODS: A prospective, open-label pharmacokinetic study of mezlocillin was carried out in newborns. Blood samples were collected using an opportunistic sampling method. HPLC was used to measure the plasma drug concentrations. A population pharmacokinetic model was developed using NONMEM software. RESULTS: Ninety-five blood samples from 48 neonates and young infants were included. The ranges of postmenstrual age and birth weight were 29-40 weeks and 1200-4000 g, respectively, including term and preterm infants. A two-compartment model with first-order elimination was developed to describe the population pharmacokinetics of mezlocillin. Postmenstrual age, current weight and serum creatinine concentration were the most important covariates. Monte Carlo simulation results indicated that the current dose of 50 mg/kg q12h resulted in 89.2% of patients achieving the therapeutic target, when the MIC of 4 mg/L was used as the breakpoint. When increasing the dosing frequency to q8h, a dose of 20 mg/kg resulted in 74.3% of patients achieving the therapeutic target. CONCLUSIONS: A population pharmacokinetic model of mezlocillin in neonates and young infants was established. Optimal dosing regimens based on this model were provided for use in neonatal infections.


Assuntos
Antibacterianos , Mezlocilina , Antibacterianos/uso terapêutico , Creatinina , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Testes de Sensibilidade Microbiana , Método de Monte Carlo , Estudos Prospectivos
3.
Clin Pharmacokinet ; 61(7): 1027-1038, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35513741

RESUMO

BACKGROUND AND OBJECTIVE: Vancomycin is frequently used to treat Gram-positive bacterial infections in neonates. However, there is still no consensus on the optimal initial dosing regimen. This study aimed to assess the performance of pharmacokinetic model-based virtual trials to predict the dose-exposure relationship of vancomycin in neonates. METHODS: The PubMed database was searched for clinical trials of vancomycin in neonates that reported the percentage of target attainment. Monte Carlo simulations were performed using nonlinear mixed-effect modeling to predict the dose-exposure relationship, and the differences in outcomes between virtual trials and real-world data in clinical studies were calculated. RESULTS: A total of 11 studies with 14 dosing groups were identified from the literature to evaluate dose-exposure relationships. For the ten dosing groups where the surrogate marker for exposure was the trough concentration, the mean ± standard deviation (SD) for the target attainment between original studies and virtual trials was 3.0 ± 7.3%. Deviations between - 10 and 10% accounted for 80% of the included dosing groups. For the other four dosing groups where the surrogate marker for exposure was concentration during continuous infusion, all deviations were between - 10 and 10%, and the mean ± SD value was 2.9 ± 4.5%. CONCLUSION: The pharmacokinetic model-based virtual trials of vancomycin exhibited good predictive performance for dose-exposure relationships in neonates. These results might be used to assist the optimization of dosing regimens in neonatal practice, avoiding the need for trial and error.


Assuntos
Antibacterianos , Vancomicina , Antibacterianos/farmacocinética , Humanos , Recém-Nascido , Matemática , Método de Monte Carlo , Estudos Retrospectivos , Vancomicina/farmacocinética
4.
Eur J Pharm Sci ; 163: 105868, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33951483

RESUMO

Ceftazidime is a third-generation cephalosporin with high activity against many pathogens. But the ambiguity and diversity of the dosing regimens in neonates and young infants impair access to effective treatment. Thus, we conducted a population pharmacokinetic study of ceftazidime in this vulnerable population and recommended a model-based dosage regimen to optimize sepsis therapy. Totally 146 neonates and young infants (gestational age (GA): 36-43.4 weeks, postnatal age (PNA): 1-81 days, current weight (CW): 900-4500 g) were enrolled based on inclusion and exclusion criteria. Ceftazidime bloods samples (203) were obtained using the opportunistic sampling strategy and determined by the high-performance liquid chromatography. The population pharmacokinetic-pharmacodynamic analysis was conducted by nonlinear mixed effects model (NONMEM). A one-compartment model with first-order elimination best described the pharmacokinetic data. Covariate analysis showed the significance of GA, PNA, and CW on developmental pharmacokinetics. Monte Carlo simulation was performed based on above covariates and minimum inhibitory concentration (MIC). In the newborns with PNA ≤ 3 days (MIC=8 mg/L), the dose regimen was 25 mg/kg twice daily (BID). For the newborns with PNA > 3 days (MIC=16 mg/L), the optimal dose was 30 mg/kg three times daily (TID) for those with GA ≤ 37 weeks and 40 mg/kg TID for those with GA > 37 weeks. Overall, on the basis of the developmental population pharmacokinetic-pharmacodynamic analysis covering the whole range of neonates and young infants, the evidence-based ceftazidime dosage regimens were proposed to optimize neonatal early-onset and late-onset sepsis therapy.


Assuntos
Sepse Neonatal , Sepse , Antibacterianos/uso terapêutico , Ceftazidima , Humanos , Lactente , Recém-Nascido , Testes de Sensibilidade Microbiana , Método de Monte Carlo , Sepse Neonatal/tratamento farmacológico , Sepse/tratamento farmacológico
5.
J Clin Pharmacol ; 61(4): 538-546, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32996155

RESUMO

Amoxicillin is used to treat various bacterial infections (eg, pneumonia, sepsis, meningitis) in infants. Despite its frequent use, there is a lack of population pharmacokinetic studies in infants, resulting in a substantial variability in dosing regimens used in clinical practice. Therefore, the objective of this study was to evaluate the population pharmacokinetics of intravenous amoxicillin in infants and suggest an optimal dosage regimen. Blood samples were collected for the determination of amoxicillin concentrations using an opportunistic sampling strategy. The amoxicillin plasma concentrations were determined using high-performance liquid chromatography. Population pharmacokinetic analysis was performed using NONMEM. A total of 62 pharmacokinetic samples from 47 infants (age range, 0.09 to 2.0 years) were available for analysis. A 2-compartment model with first-order elimination was most suitable to describe the population pharmacokinetics of amoxicillin, and covariate analysis showed that only current body weight was a significant covariate. Monte Carlo simulation demonstrated that the currently used dosage regimen (25 mg/kg twice daily) resulted in only 22.4% of infants reaching their pharmacodynamic target, using a minimum inhibitory concentration (MIC) break point of 2 mg/L, whereas a dosage regimen (60 mg/kg thrice daily), as supported by the British National Formulary for Children, resulted in 80.9% of infants achieving their pharmacodynamic target. It is recommended to change antibiotics for infections caused by Escherichia coli (MIC = 8.0 mg/L) because only 27.9% of infants reached target using 60 mg/kg thrice daily.


Assuntos
Amoxicilina/farmacocinética , Antibacterianos/farmacocinética , Modelos Biológicos , Amoxicilina/farmacologia , Antibacterianos/farmacologia , Simulação por Computador , Humanos , Lactente , Testes de Sensibilidade Microbiana , Método de Monte Carlo
6.
Antimicrob Agents Chemother ; 64(11)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32816735

RESUMO

Ceftriaxone is a third-generation cephalosporin used to treat infants with community-acquired pneumonia. Currently, there is a large variability in the amount of ceftriaxone used for this purpose in this particular age group, and an evidence-based optimal dose is still unavailable. Therefore, we investigated the population pharmacokinetics of ceftriaxone in infants and performed a developmental pharmacokinetic-pharmacodynamic analysis to determine the optimal dose of ceftriaxone for the treatment of infants with community-acquired pneumonia. A prospective, open-label pharmacokinetic study of ceftriaxone was conducted in infants (between 1 month and 2 years of age), adopting an opportunistic sampling strategy to collect blood samples and applying high-performance liquid chromatography to quantify ceftriaxone concentrations. Developmental population pharmacokinetic-pharmacodynamic analysis was conducted using nonlinear mixed effects modeling (NONMEM) software. Sixty-six infants were included, and 169 samples were available for pharmacokinetic analysis. A one-compartment model with first-order elimination matched the data best. Covariate analysis elucidated that age and weight significantly affected ceftriaxone pharmacokinetics. According to the results of a Monte Carlo simulation, with a pharmacokinetic-pharmacodynamic target of a free drug concentration above the MIC during 70% of the dosing interval (70% fT>MIC), regimens of 20 mg/kg of body weight twice daily for infants under 1 year of age and 30 mg/kg twice daily for those older than 1 year of age were suggested. The population pharmacokinetics of ceftriaxone were established in infants, and evidence-based dosing regimens for community-acquired pneumonia were suggested based on developmental pharmacokinetics-pharmacodynamics.


Assuntos
Ceftriaxona , Infecções Comunitárias Adquiridas , Adulto , Antibacterianos/uso terapêutico , Infecções Comunitárias Adquiridas/tratamento farmacológico , Humanos , Lactente , Testes de Sensibilidade Microbiana , Método de Monte Carlo , Estudos Prospectivos
7.
Eur J Clin Pharmacol ; 76(11): 1547-1556, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32583354

RESUMO

PURPOSE: To assess ceftriaxone population pharmacokinetics in a large pediatric population and describe the proper dose for establishing an optimized antibiotic regimen. METHODS: From pediatric patients using ceftriaxone, blood samples were obtained and the concentration was measured using high-performance liquid chromatography ultraviolet detection. The NONMEM software program was used for population pharmacokinetic analysis, for which data from 99 pediatric patients (2 to 12 years old) was collected and 175 blood concentrations were obtained. RESULTS: The best fit with the data was shown by the one-compartment model with first-order elimination. According to covariate analysis, weight had a significant impact on the clearance of ceftriaxone. Using Monte Carlo simulation, in a pediatric population with community-acquired pneumonia, a dose regimen of 100 mg/kg every 24 h produced satisfactory target attainment rates while remaining within the required minimum inhibitory concentration (2 mg/L). CONCLUSION: Population pharmacokinetics of ceftriaxone was evaluated in children and an optimum dosing regimen was constructed on the basis of the pharmacokinetics-pharmacodynamics model-based approach.


Assuntos
Ceftriaxona/farmacocinética , Infecções Comunitárias Adquiridas/tratamento farmacológico , Pneumonia/tratamento farmacológico , Ceftriaxona/administração & dosagem , Criança , Pré-Escolar , Humanos , Modelos Biológicos , Método de Monte Carlo
8.
J Antimicrob Chemother ; 75(7): 1917-1924, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32129861

RESUMO

OBJECTIVES: To evaluate the population pharmacokinetics of cefoperazone in children and establish an evidence-based dosing regimen using a developmental pharmacokinetic-pharmacodynamic approach in order to optimize cefoperazone treatment. METHODS: A model-based, open-label, opportunistic-sampling pharmacokinetic study was conducted in China. Blood samples from 99 cefoperazone-treated children were collected and quantified by HPLC/MS. NONMEM software was used for population pharmacokinetic-pharmacodynamic analysis. This study was registered at ClinicalTrials.gov (NCT03113344). RESULTS: A two-compartment model with first-order elimination agreed well with the experimental data. Covariate analysis showed that current body weight had a significant effect on the pharmacokinetics of cefoperazone. Monte Carlo simulation showed that for bacteria for which cefoperazone has an MIC of 0.5 mg/L, 78.1% of hypothetical children treated with '40 mg/kg/day, q8h, IV drip 3 h' would reach the pharmacodynamic target. For bacteria for which cefoperazone has an MIC of 8 mg/L, 88.4% of hypothetical children treated with 80 mg/kg/day (continuous infusion) would reach the treatment goal. A 160 mg/kg/day (continuous infusion) regimen can cover bacteria for which cefoperazone has an MIC of 16 mg/L. Nevertheless, even if using the maximum reported dose of 160 mg/kg/day (continuous infusion), the ratio of hypothetical children reaching the treatment target was only 9.9% for bacteria for which cefoperazone has an MIC of 32 mg/L. CONCLUSIONS: For cefoperazone, population pharmacokinetics were evaluated in children and an appropriate dosing regimen was developed based on developmental pharmacokinetics-pharmacodynamics. The dose indicated in the instructions (20-160 mg/kg/day) can basically cover the clinically common bacteria for which cefoperazone has an MIC of ≤16 mg/L. However, for bacteria for which the MIC is >16 mg/L, cefoperazone is not a preferred choice.


Assuntos
Antibacterianos , Cefoperazona , Antibacterianos/uso terapêutico , Criança , China , Cromatografia Líquida de Alta Pressão , Humanos , Testes de Sensibilidade Microbiana , Método de Monte Carlo
9.
Sci Rep ; 8(1): 15616, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30353150

RESUMO

The impact of environment on individuals is particularly critical. In evolutionary games, adopting the strategy of the neighbor who performs better is nontrivial for the survival and maintenance of cooperation, in that such an action may help the agents to obtain higher benefit and more obvious evolutionary advantages. Inspired by this idea, we investigate the effect of the environment-based preference selection on the evolution of cooperation in spatial prisoner's dilemma. A simple rule, incorporating individual preference selection via an adjustable parameter α to explore how the selection of the potential strategy sources influences individual behavior traits, is considered. Because social interaction may not be the only way of generating payoffs, we assume that the individual's income is also affected by the environment. Besides, taking into account individual differences, we introduce the heterogeneity of the environment. Through numerous computing simulations, we find that environment-based preference selection, which accelerates the microscopic organization of cooperator clusters to resist the aggression of defectors, can truly promote cooperation within a large range of parameters. Our study indicates that the combination of heterogeneity and preference selection may be key for the sustainability of cooperation in structured populations.


Assuntos
Comportamento Cooperativo , Dilema do Prisioneiro , Agressão , Evolução Biológica , Simulação por Computador , Teoria dos Jogos , Humanos , Relações Interpessoais , Método de Monte Carlo
10.
Artigo em Inglês | MEDLINE | ID: mdl-29941652

RESUMO

Azithromycin is extensively used in children with community-acquired pneumonia (CAP). Currently, the intravenous azithromycin is used off-label in children partly due to lacking of pharmacokinetic data. Our objective was to evaluate the population pharmacokinetics (PPK) and optimize dose strategy in order to improve treatment in this distinctive population. This was a prospective, multicenter, open-labeled pharmacokinetic study. Blood samples were collected from hospitalized pediatric patients and concentrations were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). PPK analysis was conducted using NONMEM software. The pharmacokinetic data from 95 pediatric patients (age range, 2.1 to 11.7 years) were available for analysis. The PPK was best fitted by a two-compartment model with linear elimination. Covariate analysis verified that body weight and alanine aminotransferase (ALT) had significant effects on azithromycin pharmacokinetics, yielding a 24% decrease of clearance in patients with ALT of >40. Monte Carlo simulation showed that for children with normal liver function, a loading-dose strategy (a loading dose of 15 mg/kg of body weight followed by maintenance doses of 10 mg/kg) would achieve the ratio of the area under free drug plasma concentration-time curve over 24 h (fAUC) to MIC90 (fAUC/MIC) target of 3 h in 53.2% of hypothetical patients, using a normative MIC susceptibility breakpoint of 2 mg/liter. For children with ALT of >40, the proposed dose needed to decrease by 15% to achieve comparable exposure. The corresponding risk of overdose for the recommended dosing regimen was less than 5.8%. In conclusion, the PPK of azithromycin was evaluated in children with CAP and an optimal dosing regimen was constructed based on developmental pharmacokinetic-pharmacodynamic modeling and simulation.


Assuntos
Antibacterianos/farmacocinética , Antibacterianos/uso terapêutico , Azitromicina/farmacocinética , Azitromicina/uso terapêutico , Infecções Comunitárias Adquiridas/tratamento farmacológico , Pneumonia/tratamento farmacológico , Alanina Transaminase/metabolismo , Criança , Pré-Escolar , Cromatografia Líquida/métodos , Infecções Comunitárias Adquiridas/metabolismo , Feminino , Humanos , Masculino , Testes de Sensibilidade Microbiana/métodos , Método de Monte Carlo , Pneumonia/metabolismo , Estudos Prospectivos , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA