Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 21(8): 4320-4330, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30724273

RESUMO

The monovalent sodium ion (Na+) is a critical modulator of thrombin. However, the mechanism of thrombin's activation by Na+ has been widely debated for more than twenty years. Details of the linkage between thrombin and Na+ remain vague due to limited temporal and spatial resolution in experiments. In this work, we combine microsecond scale atomic-detailed molecular dynamics simulations with correlation network analyses and hidden Markov modeling to probe the detailed thermodynamic and kinetic picture of Na+-binding events and their resulting allosteric responses in thrombin. We reveal that ASP189 and ALA190 comprise a stable Na+-binding site (referred as "inner" Na+-binding site) along with the previously known one (referred as "outer" Na+-binding site). The corresponding newly identified Na+-binding mode introduces significant allosteric responses in thrombin's regulatory regions by stabilizing selected torsion angles of residues responsive to Na+-binding. Our Markov model indicates that the bound Na+ prefers to transfer between the two Na+-binding sites when an unbinding event takes place. These results suggest a testable hypothesis of a substrate-driven Na+ migration (ΔG ∼ 1.7 kcal mol-1) from the "inner" Na+-binding site to the "outer" one during thrombin's catalytic activities. The binding of a Na+ ion at the "inner" Na+-binding site should be inferred as a prerequisite for thrombin's efficient recognition to the substrate, which opens a new angle for our understanding of Na+-binding's allosteric activation on thrombin and sheds light on detailed processes in thrombin's activation.


Assuntos
Simulação de Dinâmica Molecular , Sódio/química , Trombina/química , Regulação Alostérica , Sítios de Ligação , Íons/química , Cinética , Cadeias de Markov , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA