Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Chemosphere ; 343: 140303, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37769920

RESUMO

The reactions between chlorobenzene(CB) and ozone have been studied comprehensively in this paper. Chlorobenzene is a commonly found chlorinated aromatic volatile organic compound(VOC), and its emission into the atmosphere can cause harm to the ecosystem and human health. The frequent occurrence of mineral particles from sandstorms exerts a significant influence on the atmospheric chemistry of the troposphere. Mineral particles are abundant in SiO2 and Al2O3 content. Therefore, we investigated the homogeneous and heterogeneous reaction processes of CB and ozone in the atmosphere by using density functional theory (DFT) method at the M06-2X/6-311++g(3df,2p)//M06-2X/6-31+g(d,p) level. The atmospheric fate, reaction rate and toxicity evaluation of CB ozonation were studied in the gas-phase section. Toxicity evaluation results showed that ozonation of CB could effectively reduce its toxicity. For the heterogeneous process, we simulated three types of SiO2 clusters and nine types of (Al2O3)n clusters, and studied the configurations of CB adsorbed on the cluster surfaces. We found that adsorption of CB on the SiO2 clusters was achieved through hydrogen bonding, while adsorption of CB on the Al2O3 clusters was achieved through both hydrogen bonding and metal bonding. The energy for CB adsorption on the (Al2O3)n cluster surface was higher than that for the SixOy(OH)z cluster surface, and both types of clusters exhibited efficient adsorption of CB. As the SixOy(OH)z clusters grew larger, the rates for the reactions between O3 and CB increased. CB travelled long distances along the Al2O3 clusters, leading to an extended influence range.

2.
J Hazard Mater ; 416: 126250, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492993

RESUMO

The research on the mechanisms and kinetics of radical oxidation in peracetic acid-based advanced oxidation processes was relatively limited. In this work, HO• and organic radicals mediated reactions of acetaminophen (ACT) were investigated, and the reactivities of important organic radicals (CH3COO• and CH3COOO•) were calculated. The results showed that initiated reaction rate constants of ACT are in the order: CH3COO• (5.44 × 1010 M-1 s-1) > HO• (7.07 × 109 M-1 s-1) > CH3O• (1.57 × 107 M-1 s-1) > CH3COOO• (3.65 × 105 M-1 s-1) >> •CH3 (5.17 × 102 M-1 s-1) > CH3C•O (1.17 × 102 M-1 s-1) > CH3OO• (11.80 M-1 s-1). HO•, CH3COO• and CH3COOO• play important roles in ACT degradation. CH3COO• is another important radical in the hydroxylation of aromatic compounds in addition to HO•. Reaction rate constants of CH3COO• and aromatic compounds are 1.40 × 106 - 6.25 × 1010 M-1 s-1 with addition as the dominant pathway. CH3COOO• has high reactivity to phenolate and aniline only among the studied aromatic compounds, and it was more selective than CH3COO•. CH3COO•-mediated hydroxylation of aromatic compounds could produce their hydroxylated products with higher toxicity.


Assuntos
Ácido Peracético , Poluentes Químicos da Água , Acetaminofen/toxicidade , Radical Hidroxila , Cinética , Oxirredução , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
3.
Environ Res ; 188: 109713, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32535355

RESUMO

The pharmaceutical and personal care products (PPCPs) in aquatic environment have aroused more interest recently. Many of them are hard to degrade by the typical biological treatments. Diclofenac (DCF), as a significant anti-inflammatory drug, is a typical PPCP and widely existed in water environment. It is reported that DCF has adverse effects on aquatic organisms. This work aims to investigate the mechanism, kinetics and ecotoxicity assessment of DCF transformation initiated by O3 in aqueous solution, and provide a solution to the degradation of DCF. The O3-initiated oxidative degradations of DCF were performed by quantum chemical calculations, including thirteen primary reaction pathways and subsequent reactions of the Criegee intermediates with H2O, NO and O3. Based on the thermodynamic data, the kinetic parameters were calculated by the transition state theory (TST). The total reaction rate constant of DCF initiated by O3 is 2.57 × 103 M-1 s-1 at 298 K and 1 atm. The results show that the reaction rate constants have a good correlation with temperature. The acute and chronic toxicities of DCF and its degradation products were evaluated at three different trophic levels by the ECOSAR program. Most products are converted into less toxic or harmless products. Oxalaldehyde (P3) and N-(2,6-dichlorophenyl)-2-oxoacetamide (P6) are still harmful to the three aquatic organisms, which should be paid more attention in the future.


Assuntos
Ozônio , Poluentes Químicos da Água , Diclofenaco/toxicidade , Cinética , Oxirredução , Ozônio/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA