Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36011951

RESUMO

To achieve the goal of carbon neutrality, many countries have established regional carbon emission trading markets and tried to build a low-carbon economic system. At present, the implementation of carbon emission trading and low-carbon economic systems faces many challenges such as manipulation, corruption, opacity, lack of trust, and lack of data tracking means. The application of blockchain technology can perfectly solve the above problems. However, the data recorded on a blockchain are often multi-type and heterogeneous, and users at different levels such as regulators, enterprises, and consumers have different requirements for data types and granularity. This requires a quick and trustworthy method for monitoring the carbon footprint of enterprises and products. In this paper, the carbon footprint traceability of enterprises and products is taken as an application scenario, and the distributed traceability concept of "traceability off the chain and verification on the chain" is adopted. By reconstructing the pointer of the file structure of the distributed storage, an interactive traceability structure supporting type filtering is constructed, which enables fast retrieval and locating of carbon emission data in the mixed data on the chain. The experimental results show that using the interactive traceability structure that supports type filtering for traceability not only releases the computing power of full nodes but also greatly improves the traceability efficiency of the long-span transaction chain. The proposed carbon footprint traceability system can rapidly trace and track data on an enterprise's and a product's carbon footprint, as well as meet the needs of users at all levels for traceability. It also offers more advantages when handling large amounts of data requests.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34501625

RESUMO

Nowadays people are mostly focused on their work while ignoring their health which in turn is creating a drastic effect on their health in the long run. Remote health monitoring through telemedicine can help people discover potential health threats in time. In the COVID-19 pandemic, remote health monitoring can help obtain and analyze biomedical signals including human body temperature without direct body contact. This technique is of great significance to achieve safe and efficient health monitoring in the COVID-19 pandemic. Existing remote biomedical signal monitoring methods cannot effectively analyze the time series data. This paper designs a remote biomedical signal monitoring framework combining the Internet of Things (IoT), 5G communication and artificial intelligence techniques. In the constructed framework, IoT devices are used to collect biomedical signals at the perception layer. Subsequently, the biomedical signals are transmitted through the 5G network to the cloud server where the GRU-AE deep learning model is deployed. It is noteworthy that the proposed GRU-AE model can analyze multi-dimensional biomedical signals in time series. Finally, this paper conducts a 24-week monitoring experiment for 2000 subjects of different ages to obtain real data. Compared with the traditional biomedical signal monitoring method based on the AutoEncoder model, the GRU-AE model has better performance. The research has an important role in promoting the development of biomedical signal monitoring techniques, which can be effectively applied to some kinds of remote health monitoring scenario.


Assuntos
COVID-19 , Internet das Coisas , Inteligência Artificial , Humanos , Pandemias , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA