Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 623: 417-431, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35597012

RESUMO

High-performance and stabilized photocatalytic degradation of antibiotic contaminants still remains a challenge in environmental photocatalysis and has been studied worldwide. In this work, hybrid Au and C60 quantum dots decorated Materials of Institute Lavoisier-125(Ti) (MIL-125(Ti)) composites were successfully fabricated for visible-light photocatalytic tetracycline degradation with pristine MIL-125(Ti) as a comparison. The experimental results revealed that the introduction of C60 quantum dots and Au nanoparticles resulted in highly enhanced visible-light harvesting and charge separation for efficient tetracycline degradation. The optimal Au/C60-MIL-125(Ti)-1.0% sample exhibited the highest visible-light photocatalytic performance, and the corresponding rate constant was approximately 9.19 times of MIL-125(Ti), indicating the significant roles of Au and C60 quantum dots in boosting visible-light absorption and charge separation. Furthermore, the radical species, possible degradation pathways and toxicity assessment, and photocatalytic mechanism were also investigated. Current work indicates a synergistic strategy for enhancing visible-light harvesting and charge separation to fabricate high-performance composite photocatalysts.


Assuntos
Nanopartículas Metálicas , Pontos Quânticos , Antibacterianos/toxicidade , Catálise , Ouro/toxicidade , Pontos Quânticos/toxicidade , Tetraciclinas , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA