Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 32(8): 1528-1544, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31271030

RESUMO

Human hepatocellular carcinoma cells, HepG2, are often used for drug mediated mitochondrial toxicity assessments. Glucose in HepG2 culture media is replaced by galactose to reveal drug-induced mitochondrial toxicity as a marked shift of drug IC50 values for the reduction of cellular ATP. It has been postulated that galactose sensitizes HepG2 mitochondria by the additional ATP consumption demand in the Leloir pathway. However, our NMR metabolomics analysis of HepG2 cells and culture media showed very limited galactose metabolism. To clarify the role of galactose in HepG2 cellular metabolism, U-13C6-galactose or U-13C6-glucose was added to HepG2 culture media to help specifically track the metabolism of those two sugars. Conversion to U-13C3-lactate was hardly detected when HepG2 cells were incubated with U-13C6-galactose, while an abundance of U-13C3-lactate was produced when HepG2 cells were incubated with U-13C6-glucose. In the absence of glucose, HepG2 cells increased glutamine consumption as a bioenergetics source. The requirement of additional glutamine almost matched the amount of glucose needed to maintain a similar level of cellular ATP in HepG2 cells. This improved understanding of galactose and glutamine metabolism in HepG2 cells helped optimize the ATP-based mitochondrial toxicity assay. The modified assay showed 96% sensitivity and 97% specificity in correctly discriminating compounds known to cause mitochondrial toxicity from those with prior evidence of not being mitochondrial toxicants. The greatest significance of the modified assay was its improved sensitivity in detecting the inhibition of mitochondrial fatty acid ß-oxidation (FAO) when glutamine was withheld. Use of this improved assay for an empirical prediction of the likely contribution of mitochondrial toxicity to human DILI (drug induced liver injury) was attempted. According to testing of 65 DILI positive compounds representing numerous mechanisms of DILI together with 55 DILI negative compounds, the overall prediction of mitochondrial mechanism-related DILI showed 25% sensitivity and 95% specificity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Galactose/metabolismo , Glucose/metabolismo , Mitocôndrias Hepáticas/metabolismo , Amiodarona/farmacologia , Benzobromarona/farmacologia , Células Hep G2 , Humanos , Metabolômica , Mitocôndrias Hepáticas/efeitos dos fármacos , Piperazinas/farmacologia , Triazóis/farmacologia , Troglitazona/farmacologia , Células Tumorais Cultivadas
2.
Curr Opin Drug Discov Devel ; 12(1): 40-52, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19152212

RESUMO

In recent years, quantitative metabolomics has played increasingly important roles in pharmaceutical research and development. Metabolic profiling of biofluids and tissues can provide a panoramic view of abundance changes in endogenous metabolites to complement transcriptomics and proteomics in monitoring cellular responses to perturbations such as diseases and drug treatments. Precise identification and accurate quantification of metabolites facilitate downstream pathway and network analysis using software tools for the discovery of clinically accessible and minimally invasive biomarkers of drug efficacy and toxicity. Metabolite abundance profiles are also indicative of biochemical phenotypes, which can be used to identify novel quantitative trait loci in genome-wide association studies. This review summarizes recent experimental and computational efforts to improve the metabolomics technology as well as progress towards in-depth integration of metabolomics with other disparate 'omics datasets to build mechanistic models in the form of detailed and testable hypotheses.


Assuntos
Indústria Farmacêutica/métodos , Metabolômica/métodos , Preparações Farmacêuticas/metabolismo , Animais , Bases de Dados Factuais , Humanos , Ressonância Magnética Nuclear Biomolecular , Preparações Farmacêuticas/sangue , Preparações Farmacêuticas/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA