Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(44): 99930-99947, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37615917

RESUMO

China is currently developing a green economy, and improving carbon productivity (CAP) is an important part of this process. The current study applied a minimum distance to strong efficient frontier (MinDS) model to measure China's CAP. The Dagum Gini coefficient and kernel density estimation methods were further used to reveal its spatial differences and dynamic evolution, while the coefficient of variation and spatial convergence models were employed to examine its convergence characteristics. The results showed significant spatial differences in China's CAP, with primarily high and low spatial distribution characteristics in the east and west, respectively. Between-regional differences were the main sources of the overall differences. Moreover, the differences between overall, eastern, central, and western regions of China all exhibited a widening trend. Although none showed σ convergence, all had significant absolute ß spatial convergence and conditional ß spatial convergence characteristics. Collectively, the findings of this study objectively reflect the real level, distribution characteristics, and spatial convergence characteristics of CAP in China as a whole and in each region, while also providing a reference basis for achieving peak carbon neutrality.


Assuntos
Carbono , Condições Sociais , China , Análise Espacial , Desenvolvimento Econômico
2.
Water Res ; 235: 119857, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36924553

RESUMO

It is generally accepted that eutrophic lakes significantly contribute to nitrous oxide (N2O) emissions. However, how these emissions are affected by the formation, disappearance, and mechanisms of algal blooms in these lakes has not been systematically investigated. This study examined and determined the relative contribution of spatiotemporal N2O production pathways in hypereutrophic Lake Taihu. Synchronously, the multi-impacts of algae on N2O production and release potential were measured in the field and in microcosms using isotope ratios of oxygen (δ18O) and bulk nitrogen (δ15N) to N2O and to intramolecular 15N site preference (SP). Results showed that N2O production in Lake Taihu was derived from microbial effects (nitrification and incomplete denitrification) and water air exchanges. N2O production was also affected by the N2O reduction process. The mean dissolved N2O concentrations in the water column during the pre-outbreak, outbreak, and decay stages of algae accumulation were almost the same (0.05 µmol·L-1), which was 2-10 times higher than in lake areas algae was not accumulating. However, except for the central lake area, all surveyed areas (with and without accumulated algae) displayed strong release potential and acted as the emission source because of dissolved N2O supersaturation in the water column. The mean N2O release fluxes during the pre-outbreak, outbreak, and decay stages of algae accumulation areas were 17.95, 26.36, and 79.32 µmol·m-2·d-1, respectively, which were 2.0-7.5 times higher than the values in the non-algae accumulation areas. In addition, the decay and decomposition of algae released large amounts of nutrients and changed the physiochemical properties of the water column. Additionally, the increased algae biomass promoted N2O release and improved the proportion of N2O produced via denitrification process to being 9.8-20.4% microbial-derived N2O. This proportion became higher when the N2O consumption during denitrification was considered as evidenced by isotopic data. However, when the algae biomass was excessive in hypereutrophic state, the algae decomposition also consumed a large amount of oxygen, thus limiting the N2O production due to complete denitrification as well as due to the limited substrate supply of nitrate by nitrification in hypoxic or anoxic conditions. Further, the excessive algae accumulation on the water surface reduced N2O release fluxes via hindering the migration of the dissolved N2O into the atmosphere. These findings provide a new perspective and understanding for accurately evaluating N2O release fluxes driven by algae processes in eutrophic lakes.


Assuntos
Desnitrificação , Nitrificação , Óxido Nitroso/metabolismo , Nitratos , Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA