Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Chemosphere ; 358: 141979, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685324

RESUMO

Metal contamination in drinking water has drawn attention since it gravely jeopardizes human health. This study was conducted in pre- and post-monsoon season in 2021 at Dhemaji, Assam, India. It characterized metal pollutants in groundwater, their distribution, possible sources, and evaluated the potential toxicity and associated health risk assessment. The seasonal mean concentration of Fe in both seasons is observed highest followed by Mn, Zn, Cu, As, and Ni. Furthermore, the metal concentrations during pre-monsoon are comparatively higher. The geogenic processes and agricultural practices are the major sources of groundwater metal contamination as evident from the statistical analysis. The different pollution indices viz. Heavy-metal Pollution Index (HPI), Heavy-metal Evaluation Index (HEI) and Degree of Contamination (Cd) suggested that groundwater is not suitable for drinking uses. The Heavy Metal Toxicity Load (HMTL) suggesting As, Co, Mn and Hg should be removed from the groundwater to ensure safety. Water pollution indices (WPI) suggest that Fe, Mn, As and Ni are the main pollution-causing metals in the study area which may be restored under the BIS and WHO limit by diluting the water. The human health risk has been calculated by carcinogenic and non-carcinogenic risk assessment. The non-carcinogenic risk for adults and children is within the threshold limit. The carcinogenic risk shows that continuous exposure of As and Ni may give rise to cancer among adults and children in the region. Therefore, comprehensive groundwater quality monitoring with well-planned treatment should be needed to provide safe and clean drinking water in the studied area.


Assuntos
Água Potável , Monitoramento Ambiental , Água Subterrânea , Metais Pesados , Poluentes Químicos da Água , Água Subterrânea/química , Metais Pesados/análise , Metais Pesados/toxicidade , Índia , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Medição de Risco , Humanos , Água Potável/química , Água Potável/análise , Estações do Ano
2.
Glob Heart ; 14(2): 165-172, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31324371

RESUMO

BACKGROUND: Appropriate strategies and key stakeholder engagement are the keys to successful implementation of new health care interventions. OBJECTIVES: The study sought to articulate the key strategies used for scaling up a research-based intervention, mPower Heart electronic Clinical Decision Support System (e-CDSS), for state-wide implementation at health facilities in Tripura. METHODS: Multiple strategies were used for statewide implementation of mPower Heart e-CDSS at noncommunicable diseases clinics across the government health facilities in Tripura: formation of a technical coordination-cum-support unit, change management, enabling environment, adapting the intervention with user focus, and strengthening the Health Information System. RESULTS: The effective delivery of a new health system intervention requires engagement at multiple levels including political leadership, health administrators, and health professionals, which can be achieved by forming a technical coordination-cum-support unit. It is important to specify the role and responsibilities of existing manpower and provide a structured training program. Enabling environment at health facilities (providing essential equipment, space and time, etc.) is also crucial. Successful implementation also requires that patients, health care providers, the health system, and leadership recognize the immediate and long-term benefits of the new intervention and have a buy-in in the intervention. With constant encouragement and nudge from administrative authorities and by using multiple strategies, 40 government health facilities adopted the mPower Heart e-CDSS. From its launch in May 2017 until November 20, 2018, a total of 100,810 eligible individuals were screened and enrolled, with 35,884 treated for hypertension, 9,698 for diabetes, and 5,527 for both hypertension and diabetes. CONCLUSIONS: Multiple strategies, based on implementation principles, are required for successful scaling up of research-based interventions.


Assuntos
Sistemas de Apoio a Decisões Clínicas/normas , Serviços de Saúde/normas , Doenças não Transmissíveis/prevenção & controle , Atenção Primária à Saúde/organização & administração , Participação dos Interessados , Humanos , Índia , Doenças não Transmissíveis/epidemiologia , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA