Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 241: 113714, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35660378

RESUMO

Melamine (MEL) and its derivatives, ammeline (AMN), ammelide (AMD), cyanuric acid (CYA) are widely existed in environmental media. Animal studies have reported the cumulative risk assessment (CRA) of simultaneous exposure to MEL and its derivatives and explored the associations between exposure and routine blood parameters. Such information is largely unknown in human studies. In this study, we detected the urinary concentrations of MEL and its derivatives in 239 Chinese adults to conduct the CRA by evaluating their hazard quotients (HQ) and hazard Index (HI), and also explored the possible associations between exposure and measured routine blood parameters in study population. The detectable frequencies of MEL, AMN, AMD and CYA were 96.65%, 41.00%, 97.91% and 97.07%, respectively. The median values of creatinine (Cr)-adjusted MEL, AMN, AMD, CYA and the total concentrations of MEL and its derivatives (∑MEL) were 11.41 µg/g Cr, not detected (ND), 2.64 µg/g Cr, 15.30 µg/g Cr, 35.02 µg/g Cr, respectively. There were 9 (3.77%) participants with estimated daily intakes (EDIs) of CYA exceeding the tolerable daily intake (TDI) of 2500 ng/kg bw/day, and 12 (5.02%) participants with HI of ∑MEL exposure exceeding 1 based on the strictest TDI value. Urinary concentrations of MEL and its derivatives were positively associated with specific routine blood parameters, including hematocrit, hemoglobin, mean corpuscular volume, mean corpuscular hemoglobin concentration, mean corpuscular hemoglobin, white blood cell, neutrophil count (P < 0.05). Meanwhile, exposure to MEL and its derivatives increased the risk of red blood cell abnormality (P < 0.05). Our study is the first study to provide evidence-based data on the CRA of exposure to MEL and its derivatives in Chinese adults, and to propose a possible association between such exposure and routine blood parameters in human.


Assuntos
Contaminação de Alimentos , Triazinas , Adulto , Animais , China , Contaminação de Alimentos/análise , Humanos , Nível de Efeito Adverso não Observado , Medição de Risco , Triazinas/análise , Triazinas/toxicidade
2.
J Chem Inf Model ; 59(2): 895-913, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30481020

RESUMO

In structure-based drug design, scoring functions are often employed to evaluate protein-ligand interactions. A variety of scoring functions have been developed so far, and thus, some objective benchmarks are desired for assessing their strength and weakness. The comparative assessment of scoring functions (CASF) benchmark developed by us provides an answer to this demand. CASF is designed as a "scoring benchmark", where the scoring process is decoupled from the docking process to depict the performance of scoring function more precisely. Here, we describe the latest update of this benchmark, i.e., CASF-2016. Each scoring function is still evaluated by four metrics, including "scoring power", "ranking power", "docking power", and "screening power". Nevertheless, the evaluation methods have been improved considerably in several aspects. A new test set is compiled, which consists of 285 protein-ligand complexes with high-quality crystal structures and reliable binding constants. A panel of 25 scoring functions are tested on CASF-2016 as a demonstration. Our results reveal that the performance of current scoring functions is more promising in terms of docking power than scoring, ranking, and screening power. Scoring power is somewhat correlated with ranking power, so are docking power and screening power. The results obtained on CASF-2016 may provide valuable guidance for the end users to make smart choices among available scoring functions. Moreover, CASF is created as an open-access benchmark so that other researchers can utilize it to test a wider range of scoring functions. The complete CASF-2016 benchmark will be released on the PDBbind-CN web server ( http://www.pdbbind-cn.org/casf.asp/ ) once this article is published.


Assuntos
Quimioinformática/métodos , Desenho de Fármacos , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA