Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artif Intell Med ; 150: 102822, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553162

RESUMO

BACKGROUND: Stroke is a prevalent disease with a significant global impact. Effective assessment of stroke severity is vital for an accurate diagnosis, appropriate treatment, and optimal clinical outcomes. The National Institutes of Health Stroke Scale (NIHSS) is a widely used scale for quantitatively assessing stroke severity. However, the current manual scoring of NIHSS is labor-intensive, time-consuming, and sometimes unreliable. Applying artificial intelligence (AI) techniques to automate the quantitative assessment of stroke on vast amounts of electronic health records (EHRs) has attracted much interest. OBJECTIVE: This study aims to develop an automatic, quantitative stroke severity assessment framework through automating the entire NIHSS scoring process on Chinese clinical EHRs. METHODS: Our approach consists of two major parts: Chinese clinical named entity recognition (CNER) with a domain-adaptive pre-trained large language model (LLM) and automated NIHSS scoring. To build a high-performing CNER model, we first construct a stroke-specific, densely annotated dataset "Chinese Stroke Clinical Records" (CSCR) from EHRs provided by our partner hospital, based on a stroke ontology that defines semantically related entities for stroke assessment. We then pre-train a Chinese clinical LLM coined "CliRoberta" through domain-adaptive transfer learning and construct a deep learning-based CNER model that can accurately extract entities directly from Chinese EHRs. Finally, an automated, end-to-end NIHSS scoring pipeline is proposed by mapping the extracted entities to relevant NIHSS items and values, to quantitatively assess the stroke severity. RESULTS: Results obtained on a benchmark dataset CCKS2019 and our newly created CSCR dataset demonstrate the superior performance of our domain-adaptive pre-trained LLM and the CNER model, compared with the existing benchmark LLMs and CNER models. The high F1 score of 0.990 ensures the reliability of our model in accurately extracting the entities for the subsequent automatic NIHSS scoring. Subsequently, our automated, end-to-end NIHSS scoring approach achieved excellent inter-rater agreement (0.823) and intraclass consistency (0.986) with the ground truth and significantly reduced the processing time from minutes to a few seconds. CONCLUSION: Our proposed automatic and quantitative framework for assessing stroke severity demonstrates exceptional performance and reliability through directly scoring the NIHSS from diagnostic notes in Chinese clinical EHRs. Moreover, this study also contributes a new clinical dataset, a pre-trained clinical LLM, and an effective deep learning-based CNER model. The deployment of these advanced algorithms can improve the accuracy and efficiency of clinical assessment, and help improve the quality, affordability and productivity of healthcare services.


Assuntos
Inteligência Artificial , Acidente Vascular Cerebral , Humanos , Reprodutibilidade dos Testes , Processamento de Linguagem Natural , Idioma , Acidente Vascular Cerebral/diagnóstico , Registros Eletrônicos de Saúde , China
2.
Cytokine Growth Factor Rev ; 77: 1-14, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38184374

RESUMO

Cytokines are small signaling proteins that regulate the immune responses to infection and tissue damage. Surface charges of cytokines determine their in vivo fate in immune regulation, e.g., half-life and distribution. The overall negative charges in the extracellular microenvironment and the acidosis during inflammation and infection may differentially impact cytokines with different surface charges for fine-tuned immune regulation via controlling tissue residential properties. However, the trend and role of cytokine surface charges has yet to be elucidated in the literature. Interestingly, we have observed that most pro-inflammatory cytokines have a negative charge, while most anti-inflammatory cytokines and chemokines have a positive charge. In this review, we extensively examined the surface charges of all cytokines and chemokines, summarized the pharmacokinetics and tissue adhesion of major cytokines, and analyzed the link of surface charge with cytokine biodistribution, activation, and function in immune regulation. Additionally, we identified that the general trend of charge disparity between pro- and anti-inflammatory cytokines represents a unique opportunity to develop precise immune modulation approaches, which can be applied to many inflammation-associated diseases including solid tumors, chronic wounds, infection, and sepsis.


Assuntos
Citocinas , Inflamação , Humanos , Citocinas/imunologia , Animais , Inflamação/imunologia , Quimiocinas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA