Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 205(9): 1075-1083, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35073244

RESUMO

Rationale: Risk of asthma hospitalization and its disparities associated with air pollutant exposures are less clear within socioeconomically disadvantaged populations, particularly at low degrees of exposure. Objectives: To assess effects of short-term exposures to fine particulate matter (particulate matter with an aerodynamic diameter of ⩽2.5 µm [PM2.5]), warm-season ozone (O3), and nitrogen dioxide (NO2) on risk of asthma hospitalization among national Medicaid beneficiaries, the most disadvantaged population in the United States, and to test whether any subpopulations were at higher risk. Methods: We constructed a time-stratified case-crossover dataset among 1,627,002 hospitalizations during 2000-2012 and estimated risk of asthma hospitalization associated with short-term PM2.5, O3, and NO2 exposures. We then restricted the analysis to hospitalizations with degrees of exposure below increasingly stringent thresholds. Furthermore, we tested effect modifications by individual- and community-level characteristics. Measurements and Main Results: Each 1-µg/m3 increase in PM2.5, 1-ppb increase in O3, and 1-ppb increase in NO2 was associated with 0.31% (95% confidence interval [CI], 0.24-0.37%), 0.10% (95% CI, 0.05 - 0.15%), and 0.28% (95% CI, 0.24 - 0.32%) increase in risk of asthma hospitalization, respectively. Low-level PM2.5 and NO2 exposures were associated with higher risk. Furthermore, beneficiaries with only one asthma hospitalization during the study period or in communities with lower population density, higher average body mass index, longer distance to the nearest hospital, or greater neighborhood deprivation experienced higher risk. Conclusions: Short-term air pollutant exposures increased risk of asthma hospitalization among Medicaid beneficiaries, even at concentrations well below national standards. The subgroup differences suggested individual and contextual factors contributed to asthma disparities under effects of air pollutant exposures.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Asma , Ozônio , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Asma/induzido quimicamente , Asma/epidemiologia , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Hospitalização , Humanos , Medicaid , Dióxido de Nitrogênio/efeitos adversos , Ozônio/efeitos adversos , Ozônio/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Estados Unidos/epidemiologia
2.
Lancet Planet Health ; 5(10): e689-e697, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34627473

RESUMO

BACKGROUND: Long-term exposure to air pollution has been linked with an increase in risk of mortality. Whether existing US Environmental Protection Agency standards are sufficient to protect health is unclear. Our study aimed to examine the relationship between exposure to lower concentrations of air pollution and the risk of mortality. METHODS: Our nationwide cohort study investigated the effect of annual average exposure to air pollutants on all-cause mortality among Medicare enrolees from the beginning of 2000 to the end of 2016. Patients entered the cohort in the month of January following enrolment and were followed up until the end of the study period in 2016 or death. We restricted our analyses to participants who had only been exposed to lower concentrations of pollutants over the study period, specifically particulate matter less than 2·5 µg/m3 in diameter (PM2·5) at a concentration of up to 12 µg/m3, nitrogen dioxide (NO2) at a concentration of up to 53 parts per billion (ppb), and summer ozone (O3) at concentrations of up to 50 ppb. We adjusted for two types of covariates, which were individual level and postal code-level variables. We used a doubly-robust additive model to estimate the change in risk. We further looked at effect-measure modification by stratification on the basis of demographic and socioeconomic characteristics. FINDINGS: We found an increased risk of mortality with all three pollutants. Each 1 µg/m3 increase in annual PM2·5 concentrations increased the absolute annual risk of death by 0·073% (95% CI 0·071-0·076). Each 1 ppb increase in annual NO2 concentrations increased the annual risk of death by 0·003% (0·003-0·004), and each 1 ppb increase in summer O3 concentrations increased the annual risk of death by 0·081% (0·080-0·083). This increase translated to approximately 11 540 attributable deaths (95% CI 11 087-11 992) for PM2·5, 1176 attributable deaths (998-1353) for NO2, and 15 115 attributable deaths (14 896-15 333) for O3 per year for each unit increase in pollution concentrations. The effects were higher in certain subgroups, including individuals living in areas of low socioeconomic status. Long-term exposure to permissible concentrations of air pollutants increases the risk of mortality. FUNDING: The US Environmental Protection Agency, National Institute of Environmental Health Services, and Health Effects Institute.


Assuntos
Poluição do Ar , Exposição Ambiental , Idoso , Poluição do Ar/análise , Poluição do Ar/estatística & dados numéricos , Estudos de Coortes , Exposição Ambiental/análise , Exposição Ambiental/estatística & dados numéricos , Humanos , Medicare , Material Particulado/análise , Material Particulado/toxicidade , Estados Unidos/epidemiologia
3.
Environ Health ; 20(1): 53, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33957920

RESUMO

BACKGROUND: Fine particulate matter (PM2.5), ozone (O3), and nitrogen dioxide (NO2) are major air pollutants that pose considerable threats to human health. However, what has been mostly missing in air pollution epidemiology is causal dose-response (D-R) relations between those exposures and mortality. Such causal D-R relations can provide profound implications in predicting health impact at a target level of air pollution concentration. METHODS: Using national Medicare cohort during 2000-2016, we simultaneously emulated causal D-R relations between chronic exposures to fine particulate matter (PM2.5), ozone (O3), and nitrogen dioxide (NO2) and all-cause mortality. To relax the contentious assumptions of inverse probability weighting for continuous exposures, including distributional form of the exposure and heteroscedasticity, we proposed a decile binning approach which divided each exposure into ten equal-sized groups by deciles, treated the lowest decile group as reference, and estimated the effects for the other groups. Binning continuous exposures also makes the inverse probability weights robust against outliers. RESULTS: Assuming the causal framework was valid, we found that higher levels of PM2.5, O3, and NO2 were causally associated with greater risk of mortality and that PM2.5 posed the greatest risk. For PM2.5, the relative risk (RR) of mortality monotonically increased from the 2nd (RR, 1.022; 95% confidence interval [CI], 1.018-1.025) to the 10th decile group (RR, 1.207; 95% CI, 1.203-1.210); for O3, the RR increased from the 2nd (RR, 1.050; 95% CI, 1.047-1.053) to the 9th decile group (RR, 1.107; 95% CI, 1.104-1.110); for NO2, the DR curve wiggled at low levels and started rising from the 6th (RR, 1.005; 95% CI, 1.002-1.018) till the highest decile group (RR, 1.024; 95% CI, 1.021-1.027). CONCLUSIONS: This study provided more robust evidence of the causal relations between air pollution exposures and mortality. The emulated causal D-R relations provided significant implications for reviewing the national air quality standards, as they inferred the number of potential early deaths prevented if air pollutants were reduced to specific levels; for example, lowering each air pollutant concentration from the 70th to 60th percentiles would prevent 65,935 early deaths per year.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Exposição Ambiental/efeitos adversos , Mortalidade , Dióxido de Nitrogênio/efeitos adversos , Ozônio/efeitos adversos , Material Particulado/efeitos adversos , Idoso , Idoso de 80 Anos ou mais , Poluentes Atmosféricos/análise , Relação Dose-Resposta a Droga , Exposição Ambiental/análise , Feminino , Humanos , Masculino , Medicare , Dióxido de Nitrogênio/análise , Ozônio/análise , Material Particulado/análise , Risco , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA