Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Radiology ; 307(1): e221109, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36511808

RESUMO

Background CT is the standard method used to assess bronchiectasis. A higher airway-to-artery diameter ratio (AAR) is typically used to identify enlarged bronchi and bronchiectasis; however, current imaging methods are limited in assessing the extent of this metric in CT scans. Purpose To determine the extent of AARs using an artificial intelligence-based chest CT and assess the association of AARs with exacerbations over time. Materials and Methods In a secondary analysis of ever-smokers from the prospective, observational, multicenter COPDGene study, AARs were quantified using an artificial intelligence tool. The percentage of airways with AAR greater than 1 (a measure of airway dilatation) in each participant on chest CT scans was determined. Pulmonary exacerbations were prospectively determined through biannual follow-up (from July 2009 to September 2021). Multivariable zero-inflated regression models were used to assess the association between the percentage of airways with AAR greater than 1 and the total number of pulmonary exacerbations over follow-up. Covariates included demographics, lung function, and conventional CT parameters. Results Among 4192 participants (median age, 59 years; IQR, 52-67 years; 1878 men [45%]), 1834 had chronic obstructive pulmonary disease (COPD). During a 10-year follow-up and in adjusted models, the percentage of airways with AARs greater than 1 (quartile 4 vs 1) was associated with a higher total number of exacerbations (risk ratio [RR], 1.08; 95% CI: 1.02, 1.15; P = .01). In participants meeting clinical and imaging criteria of bronchiectasis (ie, clinical manifestations with ≥3% of AARs >1) versus those who did not, the RR was 1.37 (95% CI: 1.31, 1.43; P < .001). Among participants with COPD, the corresponding RRs were 1.10 (95% CI: 1.02, 1.18; P = .02) and 1.32 (95% CI: 1.26, 1.39; P < .001), respectively. Conclusion In ever-smokers with chronic obstructive pulmonary disease, artificial intelligence-based CT measures of bronchiectasis were associated with more exacerbations over time. Clinical trial registration no. NCT00608764 © RSNA, 2022 Supplemental material is available for this article. See also the editorial by Schiebler and Seo in this issue.


Assuntos
Inteligência Artificial , Bronquiectasia , Doença Pulmonar Obstrutiva Crônica , Tomografia Computadorizada de Emissão , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Brônquios/irrigação sanguínea , Brônquios/diagnóstico por imagem , Brônquios/fisiopatologia , Bronquiectasia/complicações , Bronquiectasia/diagnóstico por imagem , Bronquiectasia/fisiopatologia , Seguimentos , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/genética , Análise de Regressão , Fumantes , Tomografia Computadorizada de Emissão/métodos , Estudos de Coortes
2.
Radiol Artif Intell ; 4(2): e210160, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35391767

RESUMO

Quantitative imaging measurements can be facilitated by artificial intelligence (AI) algorithms, but how they might impact decision-making and be perceived by radiologists remains uncertain. After creation of a dedicated inspiratory-expiratory CT examination and concurrent deployment of a quantitative AI algorithm for assessing air trapping, five cardiothoracic radiologists retrospectively evaluated severity of air trapping on 17 examination studies. Air trapping severity of each lobe was evaluated in three stages: qualitatively (visually); semiquantitatively, allowing manual region-of-interest measurements; and quantitatively, using results from an AI algorithm. Readers were surveyed on each case for their perceptions of the AI algorithm. The algorithm improved interreader agreement (intraclass correlation coefficients: visual, 0.28; semiquantitative, 0.40; quantitative, 0.84; P < .001) and improved correlation with pulmonary function testing (forced expiratory volume in 1 second-to-forced vital capacity ratio) (visual r = -0.26, semiquantitative r = -0.32, quantitative r = -0.44). Readers perceived moderate agreement with the AI algorithm (Likert scale average, 3.7 of 5), a mild impact on their final assessment (average, 2.6), and a neutral perception of overall utility (average, 3.5). Though the AI algorithm objectively improved interreader consistency and correlation with pulmonary function testing, individual readers did not immediately perceive this benefit, revealing a potential barrier to clinical adoption. Keywords: Technology Assessment, Quantification © RSNA, 2021.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA