RESUMO
BACKGROUND: Both nonoperative and operative treatments for spinal metastasis are expensive interventions. Patients' expected 3-month survival is believed to be a key factor to determine the most suitable treatment. However, to the best of our knowledge, no previous study lends support to the hypothesis. We sought to determine the cost-effectiveness of operative and nonoperative interventions, stratified by patients' predicted probability of 3-month survival. METHODS: A Markov model with four defined health states was used to estimate the quality-adjusted life years (QALYs) and costs for operative intervention with postoperative radiotherapy and radiotherapy alone (palliative low-dose external beam radiotherapy) of spine metastases. Transition probabilities for the model, including the risks of mortality and functional deterioration, were obtained from secondary and our institutional data. Willingness to pay thresholds were prespecified at $100,000 and $150,000. The analyses were censored after 5-year simulation from a health system perspective and discounted outcomes at 3% per year. Sensitivity analyses were conducted to test the robustness of the study design. RESULTS: The incremental cost-effectiveness ratios were $140,907 per QALY for patients with a 3-month survival probability >50%, $3,178,510 per QALY for patients with a 3-month survival probability <50%, and $168,385 per QALY for patients with independent ambulatory and 3-month survival probability >50%. CONCLUSIONS: This study emphasizes the need to choose patients carefully and estimate preoperative survival for those with spinal metastases. In addition to reaffirming previous research regarding the influence of ambulatory status on cost-effectiveness, our study goes a step further by highlighting that operative intervention with postoperative radiotherapy could be more cost-effective than radiotherapy alone for patients with a better survival outlook. Accurate survival prediction tools and larger future studies could offer more detailed insights for clinical decisions.