Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Prep Biochem Biotechnol ; 53(5): 565-571, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36047960

RESUMO

Astaxanthin is one of the most attractive carotenoid in the cosmetic, food, pharmaceutical, and aquaculture industries due to its strong bioactive properties. Among the various sources, several algae species are considered as rich sources of astaxanthin. Downstream processing of algae involves the majority of the total processing costs. Thus, elimination of high energy involved steps is imperative to achieve cost-effective scale in industry. This study aimed to determine operation conditions for astaxanthin extraction from wet Haematococcus pluvialis using microwave-assisted extraction. The isolated astaxanthin extract was evaluated for cytotoxicity on human lung cancer cells. The microwave-assisted extraction process at 75 °C under the power of 700 Watt for 7 min gave the highest astaxanthin yield (12.24 ± 0.54 mg astaxanthin/g wet cell weight). Based on MTT cell viability and Hoechst 33342 nuclear staining assays on A549 lung cancer cells, astaxanthin inhibited cell growth in dose- and time-dependent manners, where IC50 value was determined as 111.8 ± 14.8 µg/mL and apoptotic bodies were observed along with positive control group at 72 hr. These results showed that the treatment with astaxanthin extracted from wet H. pluvialis by microwave-assisted extraction exhibited anti-cancer activity on lung cancer cells indicating a newly potential to be utilized in industry.


Assuntos
Neoplasias Pulmonares , Micro-Ondas , Humanos , Desenvolvimento Sustentável , Extratos Vegetais
3.
Biomicrofluidics ; 15(2): 021501, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33791050

RESUMO

Respiratory viral infections are leading causes of death worldwide. A number of human respiratory viruses circulate in all age groups and adapt to person-to-person transmission. It is vital to understand how these viruses infect the host and how the host responds to prevent infection and onset of disease. Although animal models have been widely used to study disease states, incisive arguments related to poor prediction of patient responses have led to the development of microfluidic organ-on-chip models, which aim to recapitulate organ-level physiology. Over the past decade, human lung chips have been shown to mimic many aspects of the lung function and its complex microenvironment. In this review, we address immunological responses to viral infections and elaborate on human lung airway and alveolus chips reported to model respiratory viral infections and therapeutic interventions. Advances in the field will expedite the development of therapeutics and vaccines for human welfare.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA