RESUMO
Stabilization of arsenic-contaminated soils with ferrous sulfate has been reported in many studies, but there are few stabilization effects assessments simultaneously combined chemical extraction methods and in vitro methods, and further explored the corresponding alternative relationships. In this study, ferrous sulfate was added at FeAs molar ratio of 0, 5, 10 and 20 to stabilize As in 10 As spiked soils. Stabilization effects were assessed by 6 chemical extraction methods (toxicity characteristic leaching procedures (TCLP), HCl, diethylenetriamine pentaacetic acid (DTPA), CaCl2, CH3COONH4, (NH4)2SO4), and 4 in vitro methods (physiologically based extraction test (PBET), in vitro gastrointestinal method (IVG), Solubility Bioaccessibility Research Consortium (SBRC) method, and the Unified Bioaccessibility Research Group of Europe method (UBM)). The results showed that the HCl method provides the most conservative assessment results in non-calcareous soils, and in alkaline calcareous soils, (NH4)2SO4 method provides a more conservative assessment. In vitro methods provided significantly higher As concentrations than chemical extraction methods. The components of the simulated digestion solution as well as the parameters may have contributed to this result. The small intestinal phase of PBET and SBRC method produced the highest and lowest ranges of As concentrations, and in the range of 127-462 mg/kg and 68-222 mg/kg when the FeAs molar ratio was 5. So the small intestinal phase of PBET method may provide the most conservative assessment results, while the same phase of SBRC may underestimate the human health risks of As in stabilized soil by 51 %(at a FeAs molar ratio of 5). Spearman correlation analysis indicated that the small intestinal phase of PBET method correlated best with HCl method (correlation coefficient: 0.71). This study provides ideas for the assessment of stabilization efforts to ensure that stabilization meets ecological needs while also being less harmful to humans.
Assuntos
Arsênio , Compostos Ferrosos , Poluentes do Solo , Humanos , Arsênio/análise , Poluentes do Solo/análise , Poluição Ambiental/análise , Solo , Disponibilidade BiológicaRESUMO
Arsenic (As)-contaminated soil poses great health risk to human mostly through inadvertent oral exposure. We investigated CaAl-layered double hydroxide (CaAl-LDH), a promising immobilising agent, for the remediation of As-contaminated Chinese soils. The effects on specific soil properties and As fractionation were analyzed, and changes in the health risk of soil As were accurately assessed by means of advanced in vivo mice model and in vitro PBET-SHIME model. Results showed that the application of CaAl-LDH significantly increased soil pH and concentration of Fe and Al oxides, and effectively converted active As fractions into the most stable residual fraction, guaranteeing long-term remediation stability. Based on in vivo test, As relative bioavailability was significantly reduced by 37.75%. Based on in vitro test, As bioaccessibility in small intestinal and colon phases was significantly reduced by 25.65% and 28.57%, respectively. Furthermore, As metabolism (reduction and methylation) by the gut microbiota inhabiting colon was clearly observed. After immobilisation with CaAl-LDH, the concentration of bioaccessible As(â ¤) in the colon fluid was significantly reduced by 61.91%, and organic As (least toxic MMA(V) and DMA(V)) became the main species, which further reduced the health risk of soil As. In summary, CaAl-LDH proved to be a feasible option for immobilisation remediation of As-contaminated soils, and considerable progress was made in relevant health risk assessment.
Assuntos
Arsênio , Poluentes do Solo , Animais , Humanos , Camundongos , Arsênio/química , Disponibilidade Biológica , Poluentes do Solo/análise , Solo/química , Medição de RiscoRESUMO
INFOGEST is a standardized in vitro digestion method suitable for foods, but rarely used to study the bioaccessibility of heavy metals in food. This study aimed to explore the differences between INFOGEST and the extensively used Physiologically Based Extraction Test (PBET) and Unified Bioaccessibility Research Group of Europe Method (UBM) methods for determining the bioaccessibility of As and Cd in rice. Intestinal As (79.3 ± 8.5 %, 75.8 ± 12.7 %, and 72.3 ± 12.2 % for INFOGEST, PBET, and UBM, respectively) and Cd (47.0 ± 6.4 %, 40.7 ± 13.8 %, and 38.1 ± 15.7 % for INFOGEST, PBET, and UBM, respectively) bioaccessibilities in the rice samples determined by the three methods were generally similar (p > 0.1, except for As bioaccessibility between INFOGEST and UBM). Furthermore, PBET was significantly correlated with INFOGEST for As bioaccessibility (R2 = 0.416) and with UBM for Cd bioaccessibility (R2 = 0.879). Additionally, PBET indicated that the bioaccessibilities of As and Cd in the polished rice were 17.0 % and 19.8 % higher, respectively, than that in the unpolished rice. This study highlights the influence of in vitro methods and rice matrices on heavy metal bioaccessibility values, necessitating a more accurate assessment of health risks associated with rice consumption.
Assuntos
Arsênio , Metais Pesados , Oryza , Cádmio , Disponibilidade BiológicaRESUMO
Incidental oral ingestion is considered to be an important exposure route for humans to soil contaminants, such as fluoride (F). For 25 soil samples containing 4000 mg F/kg from aluminium smelting site in southwestern China, this study investigated F bioaccessibility in the human gastrointestinal tract in vitro. Fluoride bioaccessibility (2.4-48.8%) in the gastric phase was primarily caused by the dissolution of F-Ca and F-Al compounds (assigned to residual phase), identified by X-ray photoelectron spectroscopy and sequential extraction. Following modification to the small intestinal phase, the variation in F bioaccessibility (2.5-38.8%) should be the result of concurrent processes, including the formation of F complexes and competitive adsorption, and inversely the precipitation of fluorite and surface adsorption of formed F-Al complexes. The colon incubation with human gut microbiota yielded a 1.3-fold increase in F bioaccessibility (3.9-45.7%), probably due to the dissolution of F bound to Fe (hydr)oxides. Bioaccessibility adjustment can reduce hazard quotient of fluoride, and non-carcinogenic risk for children should be noted that soil F intake contributed 21.7% on average, up to 76.6% of oral reference dose. This will result in better understanding of human health risk assessment associated with F exposures.
Assuntos
Alumínio , Poluentes do Solo , Alumínio/metabolismo , Alumínio/toxicidade , Disponibilidade Biológica , Criança , Fluoretos/toxicidade , Trato Gastrointestinal/metabolismo , Humanos , Medição de Risco , Solo , Poluentes do Solo/metabolismoRESUMO
To identify the role of gut microbiota in human health risk assessment, the bioaccessibility of heavy metals in 14 soil samples were determined in simulated gastrointestinal fluids. Compared to the small intestinal phase, the bioaccessibility values of the colon phase varied, either increased by 3.5-fold for As, by 2.2-fold for Cr, and by 1.6-fold for Ni, or reduced by 4.4-fold for Cu, respectively. The colon incubation with adult gut microbiota yielded higher bioaccessibility value of As (1.3 times) and Fe (3.4 times) than that of the child in most soil samples. Colon bioaccessibility was about 60% greater of Cd for the adult and 30% higher of Cr for the child. Congruent data on the bioaccessibility of Cu and Ni was observed. In addition, correlation analysis indicated that in vitro bioaccessibility was primarily related to total concentrations of heavy metals in soils, followed by soil pH and active Fe/Mn oxide. Significantly, risk assessment calculated based on colon bioaccessibility indicated that the target hazard quotient (THQ > 1) of As was presented in 3 soil samples for the adult (1.05-3.35) and in 9 soil samples for the child (1.06-26.93). The hazard index (HI) of the child was 4.00 on average, greater than that of the adult (0.62), primarily due to the contribution of As and Cd. It suggested non-carcinogenic risks are likely to occur in children through typical hand-to-mouth behavior. The adjustment of colon bioaccessibility will result in more accurate risk assessment of human exposure to heavy metals from oral ingestion of contaminated soils.
Assuntos
Microbioma Gastrointestinal , Metais Pesados , Poluentes do Solo , Adulto , Criança , China , Ingestão de Alimentos , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Metais Pesados/toxicidade , Medição de Risco , Solo , Poluentes do Solo/análiseRESUMO
Rice, a staple food for half the world's population, easily accumulates arsenic (As). Research on As distribution in rice protein and starch and its relationship with rice As bioaccessibility remains limited. This study investigated As distribution, chemical composition, As bioaccessibility and speciation in rice by continuous extraction and in vitro digestion. Of the total As, 87.5-94.5% was in rice protein and 5.0-9.8% in rice starch. The As amount in different protein fractions decreased as follows: glutelin > globulin > albumin > prolamin. As(V), As(III) and DMA in rice were more bioaccessible in the small intestinal phase than the gastric phase, and almost all As(V) dissolved in the small intestinal phase. Bioaccessible As in gastrointestinal digestive solution and As mass in protein fractions (albumin, globulin, and glutelin) were significantly positively correlated (p < 0.05). These results illuminate the bioaccessibility of As to humans consuming As-contaminated rice and avoid overassessment.
Assuntos
Arsênio/análise , Oryza/química , Albuminas/química , Arsênio/química , Cromatografia Líquida de Alta Pressão , Culinária , Digestão , Globulinas/química , Glutens/química , Humanos , Espectrometria de Massas , Micro-Ondas , Oryza/metabolismo , Prolaminas/químicaRESUMO
Soil is considered as a sink for heavy metals. Human health is severely affected by the continuous intake of toxic heavy metals even in a very low concentration. In the present experiment, we determined the influence of nutritional status including control (fasted condition), glucose (fed state), plant protein (fed state), animal protein (fed state) and calcium (fed state) on soil cadmium (Cd) and copper (Cu) bioaccessibility using physiologically-based extraction test (PBET) method together with simulator of the human intestinal microbial ecosystem (SHIME) model. The bioaccessibility of Cd was 1.06-73.58%, 0.44-54.79% and 0-17.78% and Cu was 3.81-67.32%, 4.98-71.14%, and 0-17.54% in the phase-I, phase-II and Phase-III respectively (in this study gastric phase, small intestinal phase and colon phase were considered as phase-I, phase-II and Phase-III respectively). The outcomes showed that, the average Cd bioaccessibility was higher with animal protein addition compared with other treatments in different phases. So, the effect of animal protein on Cd bioaccessibility was higher than other treatments in the phase-I, phase-II and phase-III. Due to the addition of plant protein, the higher average bioaccessibility of Cu was noticed in phase-I and phase-II in comparison to other treatments. However, in phase-III, the higher average bioaccessibility of Cu was found due to control treatment comparing with other treatments. Therefore, the influence of plant protein was higher than other nutrients on Cu bioaccessibility in the phase-I and phase-II. Moreover, other nutrients showed variable influence on Cd and Cu bioaccessibility. So, nutritional status has a significant effect on bioaccessibility as well as human health risk assessment.
Assuntos
Cádmio/análise , Cobre/análise , Poluentes do Solo/análise , Ecossistema , Monitoramento Ambiental/métodos , Poluição Ambiental , Humanos , Intestinos/química , Metais Pesados , Nutrientes , SoloRESUMO
The importance of arsenic metabolism by gut microbiota has been evidenced in risk characterization from As exposures. In this study, we evaluated the metabolic potency of human gut microbiota toward As(V)-sorbed goethite and jarosite, presenting different behaviors of As release, and the solid-liquid transformation and partitioning. The release of As occurred mainly in the small intestinal phase for jarosite and in the colon phase for goethite, respectively. We found higher degree of As(V) and Fe(III) reduction by human gut microbiota in the colon digests of goethite than jarosite. Speciation analysis using high-performance liquid chromatography coupled with inductively coupled plasma mass spectrometry and X-ray absorption near-edge spectroscopy, revealed that 43.2% and 8.5% of total As was present as As(III) in the liquid and solid phase, respectively, after goethite incubation, whereas almost all generated As(III) was in the colon digests of jarosite. Therefore, As bioaccessibility in human gastrointestinal tract was predominantly contributed to Fe(III) dissolution in jarosite, and to microbial reduction of Fe(III) and As(V) in goethite. It expanded our knowledge on the role of Fe minerals in human health risk assessment associated with soil As exposures.
Assuntos
Arsênio , Microbioma Gastrointestinal , Compostos de Ferro , Compostos Férricos , Humanos , Minerais , SulfatosRESUMO
Despite rice consumption, rice bran as a byproduct of rice milling contains higher arsenic (As). The present study evaluated the metabolic potency of in vitro cultured human colon microbiota toward As from five rice bran products with 0.471-1.491 mg of As/kg. Arsenic bioaccessibility ranged from 52.8 to 78.8% in the gastric phase, and a 1.2-fold increase (66.0-95.8%) was observed upon the small intestinal phase. Subsequently, a significant decline of As bioaccessibility (11.3-63.6%) and a high methylation percentage of 18.5-79.8% were found in the colon phase. The predominant As species in the solid phase was always As(V) (49.6-63.4%), and As-thiolate complexes increased by 10% at the end of colon incubation. Human gut microbiota could induce As bioaccessibility lowering and As transformation in rice bran, which illustrated the importance of food-bound As metabolism in the human body. This will result in a better understanding of health implications associated with As exposures.