Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 22513, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581715

RESUMO

We propose a single-lead ECG-based heart rate variability (HRV) analysis algorithm to quantify autonomic nervous system activity during meditation. Respiratory sinus arrhythmia (RSA) induced by breathing is a dominant component of HRV, but its frequency depends on an individual's breathing speed. To address this RSA issue, we designed a novel HRV tachogram decomposition algorithm and new HRV indices. The proposed method was validated by using a simulation, and applied to our experimental (mindfulness meditation) data and the WESAD open-source data. During meditation, our proposed HRV indices related to vagal and sympathetic tones were significantly increased (p < 0.000005) and decreased (p < 0.000005), respectively. These results were consistent with self-reports and experimental protocols, and identified parasympathetic activation and sympathetic inhibition during meditation. In conclusion, the proposed method successfully assessed autonomic nervous system activity during meditation when respiration influences disrupted classical HRV. The proposed method can be considered a reliable approach to quantify autonomic nervous system activity.


Assuntos
Meditação , Humanos , Sistema Nervoso Autônomo/fisiologia , Nervo Vago/fisiologia , Eletrocardiografia/métodos , Respiração , Arritmia Sinusal , Frequência Cardíaca/fisiologia
2.
Sensors (Basel) ; 17(7)2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28737732

RESUMO

Human-activity recognition (HAR) and energy-expenditure (EE) estimation are major functions in the mobile healthcare system. Both functions have been investigated for a long time; however, several challenges remain unsolved, such as the confusion between activities and the recognition of energy-consuming activities involving little or no movement. To solve these problems, we propose a novel approach using an accelerometer and electrocardiogram (ECG). First, we collected a database of six activities (sitting, standing, walking, ascending, resting and running) of 13 voluntary participants. We compared the HAR performances of three models with respect to the input data type (with none, all, or some of the heart-rate variability (HRV) parameters). The best recognition performance was 96.35%, which was obtained with some selected HRV parameters. EE was also estimated for different choices of the input data type (with or without HRV parameters) and the model type (single and activity-specific). The best estimation performance was found in the case of the activity-specific model with HRV parameters. Our findings indicate that the use of human physiological data, obtained by wearable sensors, has a significant impact on both HAR and EE estimation, which are crucial functions in the mobile healthcare system.


Assuntos
Frequência Cardíaca , Metabolismo Energético , Gastos em Saúde , Humanos , Monitorização Ambulatorial , Dispositivos Eletrônicos Vestíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA