Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FEMS Yeast Res ; 242024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38268490

RESUMO

Traditional industrial Saccharomyces cerevisiae could not metabolize xylose due to the lack of a specific enzyme system for the reaction from xylose to xylulose. This study aims to metabolically remould industrial S. cerevisiae for the purpose of utilizing both glucose and xylose with high efficiency. Heterologous gene xylA from Piromyces and homologous genes related to xylose utilization were selected to construct expression cassettes and integrated into genome. The engineered strain was domesticated with industrial material under optimizing conditions subsequently to further improve xylose utilization rates. The resulting S. cerevisiae strain ABX0928-0630 exhibits a rapid growth rate and possesses near 100% xylose utilization efficiency to produce ethanol with industrial material. Pilot-scale fermentation indicated the predominant feature of ABX0928-0630 for industrial application, with ethanol yield of 0.48 g/g sugars after 48 hours and volumetric xylose consumption rate of 0.87 g/l/h during the first 24 hours. Transcriptome analysis during the modification and domestication process revealed a significant increase in the expression level of pathways associated with sugar metabolism and sugar sensing. Meanwhile, genes related to glycerol lipid metabolism exhibited a pattern of initial increase followed by a subsequent decrease, providing a valuable reference for the construction of efficient xylose-fermenting strains.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , Fermentação , Proteínas de Saccharomyces cerevisiae/genética , Etanol/metabolismo
2.
BMC Genomics ; 16: 565, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26228268

RESUMO

BACKGROUND: Eggshell is subject to quality loss with aging process of laying hens, and damaged eggshells result in economic losses of eggs. However, the genetic architecture underlying the dynamic eggshell quality remains elusive. Here, we measured eggshell quality traits, including eggshell weight (ESW), eggshell thickness (EST) and eggshell strength (ESS) at 11 time points from onset of laying to 72 weeks of age and conducted comprehensive genome-wide association studies (GWAS) in 1534 F2 hens derived from reciprocal crosses between White Leghorn (WL) and Dongxiang chickens (DX). RESULTS: ESWs at all ages exhibited moderate SNP-based heritability estimates (0.30 ~ 0.46), while the estimates for EST (0.21 ~ 0.31) and ESS (0.20 ~ 0.27) were relatively low. Eleven independent univariate genome-wide screens for each trait totally identified 1059, 1026 and 1356 significant associations with ESW, EST and ESS, respectively. Most significant loci were in a region spanning from 57.3 to 71.4 Mb of chromosome 1 (GGA1), which together account for 8.4 ~ 16.5% of the phenotypic variance for ESW from 32 to 72 weeks of age, 4.1 ~ 6.9% and 2.95 ~ 16.1% for EST and ESS from 40 to 72 weeks of age. According to linkage disequilibrium (LD) and conditional analysis, the significant SNPs in this region were in extremely strong linkage disequilibrium status. Ultimately, two missense SNPs in GGA1 and one in GGA4 were considered as promising loci on three independent genes including ITPR2, PIK3C2G, and NCAPG. The homozygotes of advantageously effective alleles on PIK3C2G and ITPR2 possessed the best eggshell quality and could partly counteract the negative effect of aging process. NCAPG had certain effect on eggshell quality for young hens. CONCLUSIONS: Identification of the promising region as well as potential candidate genes will greatly advance our understanding of the genetic basis underlying dynamic eggshell quality and has the practical significance in breeding program for the improvement of eggshell quality, especially at the later part of laying cycle.


Assuntos
Galinhas/genética , Casca de Ovo/crescimento & desenvolvimento , Ovos , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas/genética , Alelos , Animais , Peso Corporal/genética , Feminino , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA