RESUMO
As a burgeoning electrolyte system, eutectic electrolytes based on ZnCl2 /Zn(CF3 SO3 )2 /Zn(TFSI)2 have been widely proposed in advanced Zn-I2 batteries; however, safety and cost concerns significantly limit their applications. Here, we report new-type ZnSO4 -based eutectic electrolytes that are both safe and cost-effective. Their universality is evident in various solvents of polyhydric alcohols, in which multiple -OH groups not only involve in Zn2+ solvation but also interact with water, resulting in the high stability of electrolytes. Taking propylene glycol-based hydrated eutectic electrolyte as an example, it features significant advantages in non-flammability and low price that is <1/200 cost of Zn(CF3 SO3 )2 /Zn(TFSI)2 -based eutectic electrolytes. Moreover, its effectiveness in confining the shuttle effects of I2 cathode and side reactions of Zn anodes is evidenced, resulting in Zn-I2 cells with high reversibility at 1â C and 91.4 % capacity remaining under 20â C. After scaling up to the pouch cell with a record mass loading of 33.3â mg cm-2 , super-high-capacity retention of 96.7 % is achieved after 500â cycles, which exceeds other aqueous counterparts. This work significantly broadens the eutectic electrolyte family for advanced Zn battery design.
RESUMO
Antisolvent addition has been widely studied in crystallization in the pharmaceutical industries by breaking the solvation balance of the original solution. Here we report a similar antisolvent strategy to boost Zn reversibility via regulation of the electrolyte on a molecular level. By adding for example methanol into ZnSO4 electrolyte, the free water and coordinated water in Zn2+ solvation sheath gradually interact with the antisolvent, which minimizes water activity and weakens Zn2+ solvation. Concomitantly, dendrite-free Zn deposition occurs via change in the deposition orientation, as evidenced by in situ optical microscopy. Zn reversibility is significantly boosted in antisolvent electrolyte of 50 % methanol by volume (Anti-M-50 %) even under harsh environments of -20 °C and 60 °C. Additionally, the suppressed side reactions and dendrite-free Zn plating/stripping in Anti-M-50 % electrolyte significantly enhance performance of Zn/polyaniline coin and pouch cells. We demonstrate this low-cost strategy can be readily generalized to other solvents, indicating its practical universality. Results will be of immediate interest and benefit to a range of researchers in electrochemistry and energy storage.