Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 926: 171951, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38537836

RESUMO

A remarkable progress has been made toward the air quality improvements over the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) of China from 2017 to 2020. In this study, for the first time, the emission reductions of regional control measures together with the COVID-19 pandemic were considered simultaneously into the development of the GBA's emission inventories for the years of 2017 and 2020. Based on these collective emission inventories, the impacts of control measures, meteorological variations together with temporary COVID-19 lockdowns on the five major air quality index pollutants (SO2, NO2, PM2.5, PM10, and O3, excluding CO) were evaluated using the WRF-CMAQ and SMAT-CE model attainment assessment tool over the GBA region. Our results revealed that control measures in the Pearl River Delta (PRD) region affected significantly the GBA, resulting in pollutant reductions ranging from 48 % to 64 %. In contrast, control measures in Hong Kong and Macao contributed to pollutant reductions up to 10 %. In PRD emission sectors, stationary combustion, on-road, industrial processes and dust sectors stand out as the primary contributors to overall air quality improvements. Moreover, the COVID-19 pandemic during period I (Jan 23-Feb 23) led to a reduction of NO2 concentration by 7.4 %, resulting in a negative contribution (disbenefit) for O3 with an increase by 2.4 %. Our findings highlight the significance of PRD control measures for the air quality improvements over the GBA, emphasizing the necessity of implementing more refined and feasible manageable joint prevention and control policies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Ambientais , Humanos , Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Poluição do Ar/análise , Material Particulado/análise , Melhoria de Qualidade , Dióxido de Nitrogênio , Pandemias/prevenção & controle , Monitoramento Ambiental/métodos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Controle de Doenças Transmissíveis , China/epidemiologia
2.
Sci Total Environ ; 691: 101-111, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31319248

RESUMO

The rapid industrialization and economic development in the Pearl River Delta (PRD) region of southern China have led to a substantial increase in anthropogenic emissions and hence frequent haze pollution over the past two decades. In early January 2017, a severe regional haze pollution episode was captured in the PRD region, with a peak PM2.5 concentration of around 400µgm-3, the highest value ever reported at this site. During the haze episode, elevated concentrations of oxygenated volatile organic compounds (OVOCs, 33±16 ppbv) and organic matter (41±15µg m-3) were observed, indicating the enhanced roles of secondary organic aerosols (SOAs) in the formation of haze pollution. Water-soluble organic carbon (WSOC, 12.8±5.5µg C m-3) dominated the organic aerosols, with a WSOC/OC ratio of 0.63±0.12 and high correlation (R=0.85) with estimated secondary organic carbon (SOC), suggesting the predominance of a secondary origin of the measured organic aerosols during the haze episode. Four carboxylic acids (oxalic, acetic, formic, and pyruvic acids) were characterized in the aerosols (1.30±0.38µgm-3) and accounted for 3.6±1.2% of WSOC in carbon mass, with oxalic acid as the most abundant species. The simultaneous measurements of volatile organic compounds (VOCs), OVOCs, and organic acids in aerosols at this site provided an opportunity to investigate the relationship between the precursors and the products, as well as the potential formation pathways. Water-soluble aldehydes and ketones, predominantly produced via the oxidation of anthropogenic VOCs (mainly propane, toluene, n-butane, and m, p-xylene), were the main contributors of the organic acids. The formation of OVOCs is largely attributed to gas-phase photochemical oxidation, whereas the WSOC and dicarboxylic acids were produced from both photochemistry and nocturnal heterogeneous reactions. These findings provided further insights into the oxidation and evolution of organic compounds during the haze pollution episode.

3.
Environ Res ; 176: 108522, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31202046

RESUMO

BACKGROUND: Black carbon (BC) caused by incomplete combustion of fossil and bio-fuel has a dual effect on health and climate. There is a need for systematic approaches to evaluation of health outcomes and climate impacts relevant to BC exposure. OBJECTIVES: We propose and illustrate for the first time, to our knowledge, an integrated analysis of a region-specific health model with climate change valuation module to quantify the health and climate consequences of BC exposure. METHODS: Based on the data from regional air pollution monitoring stations from 2013 to 2014 in the Pearl River Delta region (PRD), China, we analyzed the carcinogenic and non-carcinogenic effects and the relative risk of cause-specific mortality due to BC exposure in three typical cities of the PRD (i.e. Guangzhou, Jiangmen and Huizhou). The radiative forcing (RF) and heating rate (HR) were calculated by the Fu-Liou-Gu (FLG) plane-parallel radiation model and the conversion of empirical formula. We further connected the health and climate impacts by calculating the excess mortalities attributed to climate warming due to BC. RESULTS: Between 2013 and 2014, carcinogenic risks of adults and children due to BC exposure in the PRD were higher than the recommended limits (1 × 10-6 to 1 × 10-4), resulting in an excess of 4.82 cancer cases per 10,000 adults (4.82 × 10-4) and an excess of 1.97 cancer cases per 10,000 children (1.97 × 10-4). Non-carcinogenic risk caused by BC was not found. The relative risks of BC exposure on mortality were higher in winter and dry season. The atmospheric RFs of BC were 26.31 W m-2, 26.41 W m-2, and 22.45 W m-2 for Guangzhou, Jiangmen and Huizhou, leading to a warming of the atmosphere in the PRD. The estimated annual excess mortalities of climate warming due to BC were 5052 (95% CI: 1983, 8139), 5121 (95% CI: 2010, 8249) and 4363 (95% CI: 1712, 7032) for Guangzhou, Jiangmen and Huizhou, respectively. CONCLUSION: Our estimates suggest that current levels of BC exposure in the PRD region posed a considerable risk to human health and the climate. Reduction of BC emission could lead to substantial health and climate co-benefits.


Assuntos
Poluentes Atmosféricos , Poluição do Ar/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Fuligem , Adulto , Carbono , Criança , China , Cidades , Monitoramento Ambiental , Proteínas Filagrinas , Humanos , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA